-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcheck_predictions.py
144 lines (124 loc) · 5.84 KB
/
check_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
'''
Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this computer program.
Using this computer program means that you agree to the terms in the LICENSE file (https://ringnet.is.tue.mpg.de/license).
Any use not explicitly granted by the LICENSE is prohibited.
Copyright 2020 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its
Max Planck Institute for Intelligent Systems. All rights reserved.
More information about the NoW Challenge is available at https://ringnet.is.tue.mpg.de/challenge.
For comments or questions, please email us at [email protected]
'''
import os
import sys
import numpy as np
from scan2mesh_computations import crop_face_scan as crop_face_scan
from scan2mesh_computations import compute_rigid_alignment as compute_rigid_alignment
from psbody.mesh import Mesh
def load_pp(fname):
lamdmarks = np.zeros([7,3]).astype(np.float32)
# import ipdb; ipdb.set_trace()
with open(fname, 'r') as f:
lines = f.readlines()
for j in range(8,15): # for j in xrange(9,15):
# import ipdb; ipdb.set_trace()
line_contentes = lines[j].split(' ')
# Check the .pp file to get to accurately pickup the columns for x , y and z coordinates
for i in range(len(line_contentes)):
if line_contentes[i].split('=')[0] == 'x':
x_content = float((line_contentes[i].split('=')[1]).split('"')[1])
elif line_contentes[i].split('=')[0] == 'y':
y_content = float((line_contentes[i].split('=')[1]).split('"')[1])
elif line_contentes[i].split('=')[0] == 'z':
z_content = float((line_contentes[i].split('=')[1]).split('"')[1])
else:
pass
lamdmarks[j-8, :] = (np.array([x_content, y_content, z_content]).astype(np.float32))
# import ipdb; ipdb.set_trace()
return lamdmarks
def load_txt(fname):
landmarks = []#np.zeros([7,3]).astype(np.float32)
with open(fname, 'r') as f:
lines = f.read().splitlines()
# import ipdb; ipdb.set_trace()
line = []
for i in range(len(lines)): # For Jiaxiang_Shang
line.append(lines[i].split(' '))
# import ipdb; ipdb.set_trace()
landmarks = np.array(line, dtype=np.float32)
lmks = landmarks
return lmks
def save_obj(path, v, f, c):
with open(path, 'w') as file:
for i in range(len(v)):
file.write('v %f %f %f %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2], c[i, 0], c[i, 1], c[i, 2]))
file.write('\n')
for i in range(len(f)):
file.write('f %d %d %d\n' % (f[i, 0], f[i, 1], f[i, 2]))
file.close()
def check_mesh_import_export(pred_mesh_filename):
"""
Import and export predicted mesh to check if mesh is properly loaded
"""
if not os.path.exists(pred_mesh_filename):
print('Predicted mesh not found - %s' % pred_mesh_filename)
return
# Load and export the predicted mesh
predicted_mesh = Mesh(filename=pred_mesh_filename)
predicted_mesh.write_obj('./predicted_mesh_export.obj')
def check_mesh_alignment(pred_mesh_filename, pred_lmk_filename, gt_mesh_filename, gt_lmk_filename):
"""
Compute rigid alignment between the predicted mesh and the ground truth scan.
:param pred_mesh_filename: path of the predicted mesh to be aligned
:param pred_lmk_filename: path of the landmarks of the predicted mesh
:param gt_mesh_filename: path of the ground truth scan
:param gt_lmk_filename: path of the ground truth landmark file
"""
if not os.path.exists(pred_mesh_filename):
print('Predicted mesh not found - %s' % pred_mesh_filename)
return
if not os.path.exists(pred_lmk_filename):
print('Predicted mesh landmarks not found - %s' % pred_lmk_filename)
return
if not os.path.exists(gt_mesh_filename):
print('Ground truth scan not found - %s' % gt_mesh_filename)
return
if not os.path.exists(gt_lmk_filename):
print('Ground truth scan landmarks not found - %s' % gt_lmk_filename)
return
# Load ground truth data
groundtruth_scan = Mesh(filename=gt_mesh_filename)
grundtruth_landmark_points = load_pp(gt_lmk_filename)
# Load predicted data
predicted_mesh = Mesh(filename=pred_mesh_filename)
pred_lmk_ext = os.path.splitext(pred_lmk_filename)[-1]
if pred_lmk_ext =='.txt':
predicted_lmks = load_txt(pred_lmk_filename)
elif pred_lmk_ext == '.npy':
predicted_lmks = np.load(pred_lmk_filename)
else:
print('Unable to load predicted landmarks, must be of format txt or npy')
return
# Crop face scan
masked_gt_scan = crop_face_scan(groundtruth_scan.v, groundtruth_scan.f, grundtruth_landmark_points)
# Rigidly align predicted mesh with the ground truth scan
predicted_mesh_vertices_aligned, masked_gt_scan = compute_rigid_alignment( masked_gt_scan, grundtruth_landmark_points,
predicted_mesh.v, predicted_mesh.f, predicted_lmks)
# Output cropped scan
masked_gt_scan.write_obj('./cropped_scan.obj')
# Output cropped aligned mesh
Mesh(predicted_mesh_vertices_aligned, predicted_mesh.f).write_obj('./predicted_mesh_aligned.obj')
def main(argv):
if len(argv) < 2:
return
pred_mesh_filename = argv[1]
if len(argv) == 2:
check_mesh_import_export(pred_mesh_filename)
elif len(argv) == 5:
pred_lmk_filename = argv[2]
gt_mesh_filename = argv[3]
gt_lmk_filename = argv[4]
check_mesh_alignment(pred_mesh_filename, pred_lmk_filename, gt_mesh_filename, gt_lmk_filename)
else:
print('Number of parameters wrong - %d != (%d or %d)' % (len(argv), 2, 5))
return
if __name__ == '__main__':
main(sys.argv)