-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdiffuse.py
256 lines (237 loc) · 10.6 KB
/
diffuse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import pathlib, shutil, os, sys
from dataclasses import dataclass
from functools import partial
import cv2
import pandas as pd
import gc
import io
import math
import lpips
from PIL import Image, ImageOps
import requests
from glob import glob
import json
from types import SimpleNamespace
import torch
from torch import nn
from torch.nn import functional as F
import torchvision
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from tqdm import tqdm
from resize_right import resize
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
from datetime import datetime
import numpy as np
import random
import hashlib
from functools import partial
from numpy import asarray
import time
import warnings
import os
import comfy.model_management
from . import disco_utils
from .settings import DiscoDiffusionSettings
from .do_run import do_run
# %%
# !! {"metadata":{
# !! "id": "DoTheRun"
# !! }}
#@title Do the Run!
#@markdown `n_batches` ignored with animation modes.
def diffuse(model, diffusion, clip_model, clip_vision, args: DiscoDiffusionSettings, batchNum):
args.display_rate = 20 #@param{type: 'number'}
if args.animation_mode == 'Video Input':
args.steps = args.video_init_steps
def move_files(start_num, end_num, old_folder, new_folder):
for i in range(start_num, end_num):
old_file = old_folder + f'/{args.batch_name}({batchNum})_{i:04}.png'
new_file = new_folder + f'/{args.batch_name}({batchNum})_{i:04}.png'
os.rename(old_file, new_file)
args.resume_run = False #@param{type: 'boolean'}
run_to_resume = 'latest' #@param{type: 'string'}
resume_from_frame = 'latest' #@param{type: 'string'}
retain_overwritten_frames = False #@param{type: 'boolean'}
if retain_overwritten_frames:
retainFolder = f'{args.batchFolder}/retained'
os.makedirs(retainFolder, exist_ok=True)
skip_step_ratio = int(args.frames_skip_steps.rstrip("%")) / 100
args.calc_frames_skip_steps = math.floor(args.steps * skip_step_ratio)
if args.animation_mode == 'Video Input':
frames = sorted(glob(args.in_path+'/*.*'));
if len(frames)==0:
sys.exit("ERROR: 0 frames found.\nPlease check your video input path and rerun the video settings cell.")
flows = glob(args.flo_folder+'/*.*')
if (len(flows)==0) and args.video_init_flow_warp:
sys.exit("ERROR: 0 flow files found.\nPlease rerun the flow generation cell.")
if args.steps <= args.calc_frames_skip_steps:
sys.exit("ERROR: You can't skip more steps than your total steps")
if args.resume_run:
if run_to_resume == 'latest':
try:
batchNum
except:
batchNum = len(glob(f"{args.batchFolder}/{args.batch_name}(*)_settings.txt"))-1
else:
batchNum = int(run_to_resume)
if resume_from_frame == 'latest':
start_frame = len(glob(args.batchFolder+f"/{args.batch_name}({batchNum})_*.png"))
if args.animation_mode != '3D' and args.turbo_mode == True and start_frame > args.turbo_preroll and start_frame % int(args.turbo_steps) != 0:
start_frame = start_frame - (start_frame % int(args.turbo_steps))
else:
start_frame = int(resume_from_frame)+1
if args.animation_mode != '3D' and args.turbo_mode == True and start_frame > args.turbo_preroll and start_frame % int(args.turbo_steps) != 0:
start_frame = start_frame - (start_frame % int(args.turbo_steps))
if retain_overwritten_frames is True:
existing_frames = len(glob(args.batchFolder+f"/{args.batch_name}({batchNum})_*.png"))
frames_to_save = existing_frames - start_frame
print(f'Moving {frames_to_save} frames to the Retained folder')
move_files(start_frame, existing_frames, args.batchFolder, retainFolder)
else:
start_frame = 0
batchNum = len(glob(args.batchFolder+"/*.txt"))
while os.path.isfile(f"{args.batchFolder}/{args.batch_name}({batchNum})_settings.txt") or os.path.isfile(f"{args.batchFolder}/{args.batch_name}-{batchNum}_settings.txt"):
batchNum += 1
#print(f'Starting Run: {args.batch_name}({batchNum}) at frame {start_frame}')
if args.set_seed == 'random_seed':
random.seed()
seed = random.randint(0, 2**32)
# print(f'Using seed: {seed}')
else:
seed = int(args.set_seed)
args.n_batches = args.n_batches if args.animation_mode == 'None' else 1
args.max_frames = args.max_frames if args.animation_mode != 'None' else 1
args.start_frame = start_frame
args.seed = seed
args.prompts_series = disco_utils.split_prompts(args.text_prompts, args.max_frames) if args.text_prompts else None,
args.image_prompts_series = disco_utils.split_prompts(args.image_prompts, args.max_frames) if args.image_prompts else None,
args.cut_overview = eval(args.cut_overview)
args.cut_innercut = eval(args.cut_innercut)
args.cut_ic_pow = eval(args.cut_ic_pow)
args.cut_icgray_p = eval(args.cut_icgray_p)
# args = {
# 'batchNum': batchNum,
# 'prompts_series':split_prompts(text_prompts) if text_prompts else None,
# 'image_prompts_series':split_prompts(image_prompts) if image_prompts else None,
# 'seed': seed,
# 'display_rate':display_rate,
# 'n_batches':n_batches if animation_mode == 'None' else 1,
# 'batch_size':batch_size,
# 'batch_name': batch_name,
# 'steps': steps,
# 'diffusion_sampling_mode': diffusion_sampling_mode,
# 'width_height': width_height,
# 'clip_guidance_scale': clip_guidance_scale,
# 'tv_scale': tv_scale,
# 'range_scale': range_scale,
# 'sat_scale': sat_scale,
# 'cutn_batches': cutn_batches,
# 'init_image': init_image,
# 'init_scale': init_scale,
# 'skip_steps': skip_steps,
# 'side_x': side_x,
# 'side_y': side_y,
# 'timestep_respacing': timestep_respacing,
# 'diffusion_steps': diffusion_steps,
# 'animation_mode': animation_mode,
# 'video_init_path': video_init_path,
# 'extract_nth_frame': extract_nth_frame,
# 'video_init_seed_continuity': video_init_seed_continuity,
# 'key_frames': key_frames,
# 'max_frames': max_frames if animation_mode != "None" else 1,
# 'interp_spline': interp_spline,
# 'start_frame': start_frame,
# 'angle': angle,
# 'zoom': zoom,
# 'translation_x': translation_x,
# 'translation_y': translation_y,
# 'translation_z': translation_z,
# 'rotation_3d_x': rotation_3d_x,
# 'rotation_3d_y': rotation_3d_y,
# 'rotation_3d_z': rotation_3d_z,
# 'midas_depth_model': midas_depth_model,
# 'midas_weight': midas_weight,
# 'near_plane': near_plane,
# 'far_plane': far_plane,
# 'fov': fov,
# 'padding_mode': padding_mode,
# 'sampling_mode': sampling_mode,
# 'angle_series':angle_series,
# 'zoom_series':zoom_series,
# 'translation_x_series':translation_x_series,
# 'translation_y_series':translation_y_series,
# 'translation_z_series':translation_z_series,
# 'rotation_3d_x_series':rotation_3d_x_series,
# 'rotation_3d_y_series':rotation_3d_y_series,
# 'rotation_3d_z_series':rotation_3d_z_series,
# 'frames_scale': frames_scale,
# 'skip_step_ratio': skip_step_ratio,
# 'calc_frames_skip_steps': calc_frames_skip_steps,
# 'text_prompts': text_prompts,
# 'image_prompts': image_prompts,
# 'cut_overview': eval(cut_overview),
# 'cut_innercut': eval(cut_innercut),
# 'cut_ic_pow': eval(cut_ic_pow),
# 'cut_icgray_p': eval(cut_icgray_p),
# 'intermediate_saves': intermediate_saves,
# 'intermediates_in_subfolder': intermediates_in_subfolder,
# 'steps_per_checkpoint': steps_per_checkpoint,
# 'perlin_init': perlin_init,
# 'perlin_mode': perlin_mode,
# 'set_seed': set_seed,
# 'eta': eta,
# 'clamp_grad': clamp_grad,
# 'clamp_max': clamp_max,
# 'skip_augs': skip_augs,
# 'randomize_class': randomize_class,
# 'clip_denoised': clip_denoised,
# 'fuzzy_prompt': fuzzy_prompt,
# 'rand_mag': rand_mag,
# 'turbo_mode':turbo_mode,
# 'turbo_steps':turbo_steps,
# 'turbo_preroll':turbo_preroll,
# 'use_vertical_symmetry': use_vertical_symmetry,
# 'use_horizontal_symmetry': use_horizontal_symmetry,
# 'transformation_percent': transformation_percent,
# #video init settings
# 'video_init_steps': video_init_steps,
# 'video_init_clip_guidance_scale': video_init_clip_guidance_scale,
# 'video_init_tv_scale': video_init_tv_scale,
# 'video_init_range_scale': video_init_range_scale,
# 'video_init_sat_scale': video_init_sat_scale,
# 'video_init_cutn_batches': video_init_cutn_batches,
# 'video_init_skip_steps': video_init_skip_steps,
# 'video_init_frames_scale': video_init_frames_scale,
# 'video_init_frames_skip_steps': video_init_frames_skip_steps,
# #warp settings
# 'video_init_flow_warp':video_init_flow_warp,
# 'video_init_flow_blend':video_init_flow_blend,
# 'video_init_check_consistency':video_init_check_consistency,
# 'video_init_blend_mode':video_init_blend_mode
# }
# if animation_mode == 'Video Input':
# # This isn't great in terms of what will get saved to the settings.. but it should work.
# args['steps'] = args['video_init_steps']
# args['clip_guidance_scale'] = args['video_init_clip_guidance_scale']
# args['tv_scale'] = args['video_init_tv_scale']
# args['range_scale'] = args['video_init_range_scale']
# args['sat_scale'] = args['video_init_sat_scale']
# args['cutn_batches'] = args['video_init_cutn_batches']
# args['skip_steps'] = args['video_init_skip_steps']
# args['frames_scale'] = args['video_init_frames_scale']
# args['frames_skip_steps'] = args['video_init_frames_skip_steps']
# args = SimpleNamespace(**args)
results = []
with torch.inference_mode(False):
gc.collect()
torch.cuda.empty_cache()
try:
results = do_run(diffusion, model, clip_model, clip_vision, args, batchNum)
except KeyboardInterrupt:
pass
finally:
#print('Seed used:', seed)
gc.collect()
torch.cuda.empty_cache()
return results