-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathmodel.py
41 lines (34 loc) · 1.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# https://github.com/spro/char-rnn.pytorch
import torch
import torch.nn as nn
from torch.autograd import Variable
class CharRNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, model="gru", n_layers=1):
super(CharRNN, self).__init__()
self.model = model.lower()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.encoder = nn.Embedding(input_size, hidden_size)
if self.model == "gru":
self.rnn = nn.GRU(hidden_size, hidden_size, n_layers)
elif self.model == "lstm":
self.rnn = nn.LSTM(hidden_size, hidden_size, n_layers)
self.decoder = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
batch_size = input.size(0)
encoded = self.encoder(input)
output, hidden = self.rnn(encoded.view(1, batch_size, -1), hidden)
output = self.decoder(output.view(batch_size, -1))
return output, hidden
def forward2(self, input, hidden):
encoded = self.encoder(input.view(1, -1))
output, hidden = self.rnn(encoded.view(1, 1, -1), hidden)
output = self.decoder(output.view(1, -1))
return output, hidden
def init_hidden(self, batch_size):
if self.model == "lstm":
return (Variable(torch.zeros(self.n_layers, batch_size, self.hidden_size)),
Variable(torch.zeros(self.n_layers, batch_size, self.hidden_size)))
return Variable(torch.zeros(self.n_layers, batch_size, self.hidden_size))