-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsupervised_training.py
147 lines (121 loc) · 5.99 KB
/
supervised_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import os.path
import numpy as np
import dataset
from tqdm import tqdm
import models
import utils
def train(epoch, model, device, dataloader, optimizer, exp_lr_scheduler, criterion, args):
""" Train loop, predict classes. """
loss_record = utils.AverageMeter()
acc_record = utils.AverageMeter()
save_path = args.save_dir + '/'
os.makedirs(save_path, exist_ok=True)
exp_lr_scheduler.step()
model.train()
for batch_idx, (data, label, index_batch) in enumerate(tqdm(dataloader())):
data, label = data.to(device), label.to(device)
optimizer.zero_grad()
output = model(data)
# _, pred = torch.max(output, 1)
loss = criterion(output, label)
# measure accuracy and record loss
acc = utils.accuracy(output, label)
acc_record.update(100 * acc[0].item() / data.size(0), data.size(0))
loss_record.update(loss.item(), data.size(0))
# compute gradient and do optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg))
return loss_record
def test(model, device, dataloader, args):
""" Test loop, print metrics """
acc_record = utils.AverageMeter()
model.eval()
for (data, label, index_batch) in tqdm(dataloader()):
data, label = data.to(device), label.to(device)
output = model(data)
# measure accuracy and record loss
acc = utils.accuracy(output, label)
acc_record.update(100 * acc[0].item() / data.size(0), data.size(0))
print('Test Acc: {:.4f}'.format(acc_record.avg))
return acc_record
def main():
# Training settings
parser = argparse.ArgumentParser(description='Supervised training')
parser.add_argument('--autoaugment', action='store_true', default=False,
help='Use autoaugment policy, only for CIFAR10 (Default: False)')
parser.add_argument('--batch_size', type=int, default=128, metavar='N',
help='Input batch size for training (default: 64)')
parser.add_argument('--dataset', type=str, default='cifar10',
help='Dataset name (default: CIFAR10)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='Number of epochs to train (default: 200)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='Learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--network', type=str, default='ResNet-18',
help='Network model (default: ResNet-18), choose between (ResNet-18, TempEns, RevNet-18)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='Disables CUDA training')
parser.add_argument('--num_workers', type=int, default=4,
help='Number of data loading workers')
parser.add_argument('--rotnet_dir', type=str, default='',
help='RotNet saved directory')
parser.add_argument('--save_dir', type=str, default='./data/supervised/',
help='Directory to save models')
parser.add_argument('--seed', type=int, default=1,
help='Random seed (default: 1)')
args = parser.parse_args()
args.name = 'supervised_%s_%s_seed%u' % (args.dataset.lower(), args.network.lower(), args.seed)
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
torch.manual_seed(args.seed)
np.random.seed(args.seed)
dataset_train = dataset.GenericDataset(dataset_name=args.dataset, split='train', autoaugment=args.autoaugment)
dataset_test = dataset.GenericDataset(dataset_name=args.dataset, split='test')
dloader_train = dataset.DataLoader(
dataset=dataset_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True)
dloader_test = dataset.DataLoader(
dataset=dataset_test,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False)
# Load model
model = models.load_net(args.network, dataset_train.n_classes)
# Use rotnet pretraining
if args.rotnet_dir:
# Load rotNet model, manually delete layers > 2
state_dict_rotnet = torch.load(os.path.join(args.rotnet_dir, 'rotNet_%s_%s_lr_best.pth' % (args.dataset, args.network.lower())))
for key in state_dict_rotnet.copy().keys():
if 'fc' in key or 'layer3' in key or 'layer4' in key:
del state_dict_rotnet[key]
model.load_state_dict(state_dict_rotnet, strict=False)
# Only finetune lower layers (>2)
for name, param in model.named_parameters():
if 'fc' not in name and 'layer3' not in name and 'layer4' not in name:
param.requires_grad = False
model = model.to(device)
# Init optimizer and loss
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=5e-4, nesterov=True)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[60, 120, 160, 200], gamma=0.2)
criterion = nn.CrossEntropyLoss()
best_acc = 0
for epoch in range(args.epochs + 1):
loss_record = train(epoch, model, device, dloader_train, optimizer, exp_lr_scheduler, criterion, args)
acc_record = test(model, device, dloader_test, args)
is_best = acc_record.avg > best_acc
best_loss = max(acc_record.avg, best_acc)
utils.save_checkpoint(model.state_dict(), is_best, args.save_dir, checkpoint=args.name + 'supervised_training_ckpt.pth', best_model=args.name + 'supervised_training_best.pth')
if __name__ == '__main__':
main()