diff --git a/cmdstanpy/_version.py b/cmdstanpy/_version.py index 06a2851d..427c15c9 100644 --- a/cmdstanpy/_version.py +++ b/cmdstanpy/_version.py @@ -1,3 +1,3 @@ """PyPi Version""" -__version__ = '1.2.2' +__version__ = '1.2.3' diff --git a/docs/_modules/cmdstanpy/cmdstan_args.html b/docs/_modules/cmdstanpy/cmdstan_args.html index 9df74f14..ff4dbfa2 100644 --- a/docs/_modules/cmdstanpy/cmdstan_args.html +++ b/docs/_modules/cmdstanpy/cmdstan_args.html @@ -5,7 +5,7 @@ - cmdstanpy.cmdstan_args — CmdStanPy 1.2.2 documentation + cmdstanpy.cmdstan_args — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/compilation.html b/docs/_modules/cmdstanpy/compilation.html index 69f84faf..a410c0be 100644 --- a/docs/_modules/cmdstanpy/compilation.html +++ b/docs/_modules/cmdstanpy/compilation.html @@ -5,7 +5,7 @@ - cmdstanpy.compilation — CmdStanPy 1.2.2 documentation + cmdstanpy.compilation — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/model.html b/docs/_modules/cmdstanpy/model.html index 8a75af9f..71385e69 100644 --- a/docs/_modules/cmdstanpy/model.html +++ b/docs/_modules/cmdstanpy/model.html @@ -5,7 +5,7 @@ - cmdstanpy.model — CmdStanPy 1.2.2 documentation + cmdstanpy.model — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/stanfit.html b/docs/_modules/cmdstanpy/stanfit.html index 396b7a0f..8f33b3b3 100644 --- a/docs/_modules/cmdstanpy/stanfit.html +++ b/docs/_modules/cmdstanpy/stanfit.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/stanfit/gq.html b/docs/_modules/cmdstanpy/stanfit/gq.html index f03cb89e..a2edae8b 100644 --- a/docs/_modules/cmdstanpy/stanfit/gq.html +++ b/docs/_modules/cmdstanpy/stanfit/gq.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit.gq — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit.gq — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/stanfit/laplace.html b/docs/_modules/cmdstanpy/stanfit/laplace.html index 548c0131..d68bc19e 100644 --- a/docs/_modules/cmdstanpy/stanfit/laplace.html +++ b/docs/_modules/cmdstanpy/stanfit/laplace.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit.laplace — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit.laplace — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/stanfit/mcmc.html b/docs/_modules/cmdstanpy/stanfit/mcmc.html index 232c7e53..3ea070bf 100644 --- a/docs/_modules/cmdstanpy/stanfit/mcmc.html +++ b/docs/_modules/cmdstanpy/stanfit/mcmc.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit.mcmc — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit.mcmc — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/stanfit/metadata.html b/docs/_modules/cmdstanpy/stanfit/metadata.html index fb1340c7..daf0208c 100644 --- a/docs/_modules/cmdstanpy/stanfit/metadata.html +++ b/docs/_modules/cmdstanpy/stanfit/metadata.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit.metadata — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit.metadata — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/stanfit/mle.html b/docs/_modules/cmdstanpy/stanfit/mle.html index 929c124b..e899645c 100644 --- a/docs/_modules/cmdstanpy/stanfit/mle.html +++ b/docs/_modules/cmdstanpy/stanfit/mle.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit.mle — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit.mle — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ diff --git a/docs/_modules/cmdstanpy/stanfit/pathfinder.html b/docs/_modules/cmdstanpy/stanfit/pathfinder.html index 0c1c486b..5f400f48 100644 --- a/docs/_modules/cmdstanpy/stanfit/pathfinder.html +++ b/docs/_modules/cmdstanpy/stanfit/pathfinder.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit.pathfinder — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit.pathfinder — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ @@ -388,8 +388,10 @@

Source code for cmdstanpy.stanfit.pathfinder

        """
         return (  # type: ignore
             self._metadata.cmdstan_config.get("num_paths", 4) > 1
-            and self._metadata.cmdstan_config.get('psis_resample', 1) == 1
-            and self._metadata.cmdstan_config.get('calculate_lp', 1) == 1
+            and self._metadata.cmdstan_config.get('psis_resample', 1)
+            in (1, 'true')
+            and self._metadata.cmdstan_config.get('calculate_lp', 1)
+            in (1, 'true')
         )
 
 
[docs] def save_csvfiles(self, dir: Optional[str] = None) -> None: diff --git a/docs/_modules/cmdstanpy/stanfit/runset.html b/docs/_modules/cmdstanpy/stanfit/runset.html index 2fc8301c..12af4654 100644 --- a/docs/_modules/cmdstanpy/stanfit/runset.html +++ b/docs/_modules/cmdstanpy/stanfit/runset.html @@ -5,7 +5,7 @@ - cmdstanpy.stanfit.runset — CmdStanPy 1.2.2 documentation + cmdstanpy.stanfit.runset — CmdStanPy 1.2.3 documentation @@ -61,7 +61,7 @@ @@ -235,18 +235,26 @@

Source code for cmdstanpy.stanfit.runset

         self._base_outfile = (
             f'{args.model_name}-{datetime.now().strftime(time_fmt)}'
         )
-        # per-process console messages
+        # per-process outputs
         self._stdout_files = [''] * self._num_procs
+        self._profile_files = [''] * self._num_procs  # optional
         if one_process_per_chain:
             for i in range(chains):
                 self._stdout_files[i] = self.file_path("-stdout.txt", id=i)
+                if args.save_profile:
+                    self._profile_files[i] = self.file_path(
+                        ".csv", extra="-profile", id=chain_ids[i]
+                    )
         else:
             self._stdout_files[0] = self.file_path("-stdout.txt")
+            if args.save_profile:
+                self._profile_files[0] = self.file_path(
+                    ".csv", extra="-profile"
+                )
 
         # per-chain output files
         self._csv_files: List[str] = [''] * chains
         self._diagnostic_files = [''] * chains  # optional
-        self._profile_files = [''] * chains  # optional
 
         if chains == 1:
             self._csv_files[0] = self.file_path(".csv")
@@ -254,10 +262,6 @@ 

Source code for cmdstanpy.stanfit.runset

                 self._diagnostic_files[0] = self.file_path(
                     ".csv", extra="-diagnostic"
                 )
-            if args.save_profile:
-                self._profile_files[0] = self.file_path(
-                    ".csv", extra="-profile"
-                )
         else:
             for i in range(chains):
                 self._csv_files[i] = self.file_path(".csv", id=chain_ids[i])
@@ -265,10 +269,6 @@ 

Source code for cmdstanpy.stanfit.runset

                     self._diagnostic_files[i] = self.file_path(
                         ".csv", extra="-diagnostic", id=chain_ids[i]
                     )
-                if args.save_profile:
-                    self._profile_files[i] = self.file_path(
-                        ".csv", extra="-profile", id=chain_ids[i]
-                    )
 
     def __repr__(self) -> str:
         repr = 'RunSet: chains={}, chain_ids={}, num_processes={}'.format(
diff --git a/docs/_modules/cmdstanpy/stanfit/vb.html b/docs/_modules/cmdstanpy/stanfit/vb.html
index 49c5f0c0..0bb4ff9a 100644
--- a/docs/_modules/cmdstanpy/stanfit/vb.html
+++ b/docs/_modules/cmdstanpy/stanfit/vb.html
@@ -5,7 +5,7 @@
   
     
     
-    cmdstanpy.stanfit.vb — CmdStanPy 1.2.2 documentation
+    cmdstanpy.stanfit.vb — CmdStanPy 1.2.3 documentation
     
     
 
@@ -61,7 +61,7 @@
   
 
diff --git a/docs/_modules/cmdstanpy/utils.html b/docs/_modules/cmdstanpy/utils.html
index ea1958ef..2c92fc88 100644
--- a/docs/_modules/cmdstanpy/utils.html
+++ b/docs/_modules/cmdstanpy/utils.html
@@ -5,7 +5,7 @@
   
     
     
-    cmdstanpy.utils — CmdStanPy 1.2.2 documentation
+    cmdstanpy.utils — CmdStanPy 1.2.3 documentation
     
     
 
@@ -61,7 +61,7 @@
   
 
diff --git a/docs/_modules/cmdstanpy/utils/cmdstan.html b/docs/_modules/cmdstanpy/utils/cmdstan.html
index 46683793..f39ab1f1 100644
--- a/docs/_modules/cmdstanpy/utils/cmdstan.html
+++ b/docs/_modules/cmdstanpy/utils/cmdstan.html
@@ -5,7 +5,7 @@
   
     
     
-    cmdstanpy.utils.cmdstan — CmdStanPy 1.2.2 documentation
+    cmdstanpy.utils.cmdstan — CmdStanPy 1.2.3 documentation
     
     
 
@@ -61,7 +61,7 @@
   
 
diff --git a/docs/_modules/index.html b/docs/_modules/index.html
index f1dce97b..e34d7057 100644
--- a/docs/_modules/index.html
+++ b/docs/_modules/index.html
@@ -5,7 +5,7 @@
   
     
     
-    Overview: module code — CmdStanPy 1.2.2 documentation
+    Overview: module code — CmdStanPy 1.2.3 documentation
     
     
 
@@ -61,7 +61,7 @@
   
 
diff --git a/docs/_modules/stanio/json.html b/docs/_modules/stanio/json.html
index 551304fb..a69b7e96 100644
--- a/docs/_modules/stanio/json.html
+++ b/docs/_modules/stanio/json.html
@@ -5,7 +5,7 @@
   
     
     
-    stanio.json — CmdStanPy 1.2.2 documentation
+    stanio.json — CmdStanPy 1.2.3 documentation
     
     
 
@@ -61,7 +61,7 @@
   
 
diff --git a/docs/_sources/changes.rst.txt b/docs/_sources/changes.rst.txt
index 15feeb75..651c46f0 100644
--- a/docs/_sources/changes.rst.txt
+++ b/docs/_sources/changes.rst.txt
@@ -7,6 +7,15 @@ What's New
 
 For full changes, see the `Releases page `_ on GitHub.
 
+
+CmdStanPy 1.2.3
+---------------
+
+- Updated the logic around reading Stan CSV files to support CmdStan 2.35.0+
+- Fixed an issue where the ``profile_files`` member of the RunSet object was not correct when running multiple chains in the same process.
+
+Reminder: The next non-bugfix release of CmdStanPy will be version 2.0, which will remove all existing deprecations.
+
 CmdStanPy 1.2.2
 ---------------
 
diff --git a/docs/_static/documentation_options.js b/docs/_static/documentation_options.js
index 809835b6..19fee609 100644
--- a/docs/_static/documentation_options.js
+++ b/docs/_static/documentation_options.js
@@ -1,6 +1,6 @@
 var DOCUMENTATION_OPTIONS = {
     URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
-    VERSION: '1.2.2',
+    VERSION: '1.2.3',
     LANGUAGE: 'en',
     COLLAPSE_INDEX: false,
     BUILDER: 'html',
diff --git a/docs/api.html b/docs/api.html
index 3ca6aa91..55fb874c 100644
--- a/docs/api.html
+++ b/docs/api.html
@@ -6,7 +6,7 @@
     
     
 
-    API Reference — CmdStanPy 1.2.2 documentation
+    API Reference — CmdStanPy 1.2.3 documentation
     
     
 
@@ -64,7 +64,7 @@
   
 
@@ -1619,7 +1619,7 @@ 

CmdStanModelReturn type: -

DataFrame

+

DataFrame

@@ -2226,7 +2226,7 @@

CmdStanMCMCReturn type: -

DataFrame

+

DataFrame

@@ -2249,7 +2249,7 @@

CmdStanMCMCReturn type: -

Dataset

+

Dataset

@@ -2383,7 +2383,7 @@

CmdStanMCMC

pandas.DataFrame

Return type:
-

DataFrame

+

DataFrame

@@ -2585,7 +2585,7 @@

CmdStanMLE
-property optimized_iterations_pd: Optional[DataFrame]
+property optimized_iterations_pd: Optional[DataFrame]

Returns all saved iterations from the optimizer and final estimate as a pandas.DataFrame which contains all optimizer outputs, i.e., the value for lp__ as well as all Stan program variables.

@@ -2608,7 +2608,7 @@

CmdStanMLE
-property optimized_params_pd: DataFrame
+property optimized_params_pd: DataFrame

Returns all final estimates from the optimizer as a pandas.DataFrame which contains all optimizer outputs, i.e., the value for lp__ as well as all Stan program variables.

@@ -2652,7 +2652,7 @@

CmdStanLaplace

vars (Optional[Union[List[str], str]]) – optional list of variable names.

Return type:
-

Dataset

+

Dataset

@@ -3052,7 +3052,7 @@

CmdStanVB
-property variational_params_pd: DataFrame
+property variational_params_pd: DataFrame

Returns inferred parameter means as pandas DataFrame.

@@ -3064,7 +3064,7 @@

CmdStanVB
-property variational_sample_pd: DataFrame
+property variational_sample_pd: DataFrame

Returns the set of approximate posterior output draws as a pandas DataFrame.

@@ -3142,7 +3142,7 @@

CmdStanGQReturn type: -

DataFrame

+

DataFrame

@@ -3155,7 +3155,7 @@

CmdStanGQ draws_xr(vars: Optional[Union[str, List[str]]] = None, inc_warmup: bool = False, inc_sample: bool = False) NoReturn[source]
-draws_xr(vars: Optional[Union[str, List[str]]] = None, inc_warmup: bool = False, inc_sample: bool = False) Dataset
+draws_xr(vars: Optional[Union[str, List[str]]] = None, inc_warmup: bool = False, inc_sample: bool = False) Dataset

Returns the generated quantities draws as a xarray Dataset.

This method can only be called when the underlying fit was made through sampling, it cannot be used on MLE or VB outputs.

@@ -3531,7 +3531,7 @@

write_stan_jsonnumpy.asarray(), e.g a -pandas.Series.

+pandas.Series.

Produces a file compatible with the Json Format for Cmdstan

@@ -3540,7 +3540,7 @@

write_stan_jsonstr) – File path for the created json. Will be overwritten if already in existence.

  • data (Mapping[str, Any]) – A mapping from strings to values. This can be a dictionary -or something more exotic like an xarray.Dataset. This will be +or something more exotic like an xarray.Dataset. This will be copied before type conversion, not modified

  • diff --git a/docs/changes.html b/docs/changes.html index 41694480..e51507b5 100644 --- a/docs/changes.html +++ b/docs/changes.html @@ -6,7 +6,7 @@ - What’s New — CmdStanPy 1.2.2 documentation + What’s New — CmdStanPy 1.2.3 documentation @@ -64,7 +64,7 @@ @@ -172,6 +172,11 @@

    -

    -
    -
    -
    -
    -
    -16:29:42 - cmdstanpy - INFO - Chain [1] done processing
    +15:16:07 - cmdstanpy - INFO - Chain [1] start processing
    +15:16:07 - cmdstanpy - INFO - Chain [1] done processing
     

    -16:29:44 - cmdstanpy - INFO - Chain [1] done processing
    +15:16:09 - cmdstanpy - INFO - Chain [1] start processing
    +15:16:09 - cmdstanpy - INFO - Chain [1] done processing
     
    @@ -349,11 +342,11 @@

    Example: variational inference with Pathfinder for model
     CmdStanPathfinder: model=bernoulli['method=pathfinder']
      csv_files:
    -        /tmp/tmpimv2ege0/bernoullifbcxwakw/bernoulli-20240326162944.csv
    +        /tmp/tmpy5plbz4g/bernoullio19cm8ts/bernoulli-20240603151609.csv
      output_files:
    -        /tmp/tmpimv2ege0/bernoullifbcxwakw/bernoulli-20240326162944_0-stdout.txt
    +        /tmp/tmpy5plbz4g/bernoullio19cm8ts/bernoulli-20240603151609_0-stdout.txt
     Metadata:
    -{'stan_version_major': 2, 'stan_version_minor': 34, 'stan_version_patch': 1, 'model': 'bernoulli_model', 'start_datetime': '2024-03-26 16:29:44 UTC', 'method': 'pathfinder', 'init_alpha': 0.001, 'tol_obj': 1e-12, 'tol_rel_obj': 10000, 'tol_grad': 1e-08, 'tol_rel_grad': 10000000.0, 'tol_param': 1e-08, 'history_size': 5, 'num_psis_draws': 1000, 'num_paths': 4, 'save_single_paths': 0, 'psis_resample': 1, 'calculate_lp': 1, 'max_lbfgs_iters': 1000, 'num_draws': 1000, 'num_elbo_draws': 25, 'id': 1, 'data_file': '/home/runner/.cmdstan/cmdstan-2.34.1/examples/bernoulli/bernoulli.data.json', 'init': 2, 'seed': 50890, 'diagnostic_file': '', 'refresh': 100, 'sig_figs': -1, 'profile_file': 'profile.csv', 'save_cmdstan_config': 0, 'num_threads': 1, 'stanc_version': 'stanc3 v2.34.0', 'stancflags': '', 'raw_header': 'lp_approx__,lp__,theta', 'column_names': ('lp_approx__', 'lp__', 'theta')}
    +{'stan_version_major': 2, 'stan_version_minor': 35, 'stan_version_patch': 0, 'model': 'bernoulli_model', 'start_datetime': '2024-06-03 15:16:09 UTC', 'method': 'pathfinder', 'init_alpha': 0.001, 'tol_obj': 1e-12, 'tol_rel_obj': 10000, 'tol_grad': 1e-08, 'tol_rel_grad': 10000000.0, 'tol_param': 1e-08, 'history_size': 5, 'num_psis_draws': 1000, 'num_paths': 4, 'save_single_paths': 'false', 'psis_resample': 'true', 'calculate_lp': 'true', 'max_lbfgs_iters': 1000, 'num_draws': 1000, 'num_elbo_draws': 25, 'id': 1, 'data_file': '/home/runner/.cmdstan/cmdstan-2.35.0/examples/bernoulli/bernoulli.data.json', 'init': 2, 'seed': 37888, 'diagnostic_file': '', 'refresh': 100, 'sig_figs': -1, 'profile_file': 'profile.csv', 'save_cmdstan_config': 'false', 'num_threads': 1, 'stanc_version': 'stanc3 v2.35.0', 'stancflags': '', 'raw_header': 'lp_approx__,lp__,theta', 'column_names': ('lp_approx__', 'lp__', 'theta')}
     
     

    @@ -431,7 +424,7 @@

    Pathfinders as initialization for the MCMC sampler
    -[{'theta': array(0.278046)}, {'theta': array(0.189515)}, {'theta': array(0.28219)}, {'theta': array(0.174821)}]
    +[{'theta': array(0.244849)}, {'theta': array(0.0384281)}, {'theta': array(0.148251)}, {'theta': array(0.532504)}]
     

    The create_inits takes two arguments:

    @@ -453,7 +446,7 @@

    Pathfinders as initialization for the MCMC sampler
    -[{'theta': array(0.151519)}, {'theta': array(0.156614)}, {'theta': array(0.066908)}]
    +[{'theta': array(0.295373)}, {'theta': array(0.223648)}, {'theta': array(0.238005)}]
     

    diff --git a/docs/users-guide/examples/Pathfinder.ipynb b/docs/users-guide/examples/Pathfinder.ipynb index daeee884..6f695652 100644 --- a/docs/users-guide/examples/Pathfinder.ipynb +++ b/docs/users-guide/examples/Pathfinder.ipynb @@ -42,10 +42,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:43.878098Z", - "iopub.status.busy": "2024-03-26T16:29:43.877555Z", - "iopub.status.idle": "2024-03-26T16:29:44.225458Z", - "shell.execute_reply": "2024-03-26T16:29:44.224871Z" + "iopub.execute_input": "2024-06-03T15:16:09.012959Z", + "iopub.status.busy": "2024-06-03T15:16:09.012455Z", + "iopub.status.idle": "2024-06-03T15:16:09.394972Z", + "shell.execute_reply": "2024-06-03T15:16:09.394222Z" } }, "outputs": [], @@ -59,10 +59,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:44.228431Z", - "iopub.status.busy": "2024-03-26T16:29:44.227964Z", - "iopub.status.idle": "2024-03-26T16:29:44.313140Z", - "shell.execute_reply": "2024-03-26T16:29:44.312554Z" + "iopub.execute_input": "2024-06-03T15:16:09.398404Z", + "iopub.status.busy": "2024-06-03T15:16:09.397898Z", + "iopub.status.idle": "2024-06-03T15:16:09.489569Z", + "shell.execute_reply": "2024-06-03T15:16:09.488916Z" } }, "outputs": [ @@ -70,14 +70,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:29:44 - cmdstanpy - INFO - Chain [1] start processing\n" + "15:16:09 - cmdstanpy - INFO - Chain [1] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:29:44 - cmdstanpy - INFO - Chain [1] done processing\n" + "15:16:09 - cmdstanpy - INFO - Chain [1] done processing\n" ] } ], @@ -96,10 +96,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:44.316072Z", - "iopub.status.busy": "2024-03-26T16:29:44.315710Z", - "iopub.status.idle": "2024-03-26T16:29:44.319485Z", - "shell.execute_reply": "2024-03-26T16:29:44.318839Z" + "iopub.execute_input": "2024-06-03T15:16:09.492418Z", + "iopub.status.busy": "2024-06-03T15:16:09.492083Z", + "iopub.status.idle": "2024-06-03T15:16:09.496146Z", + "shell.execute_reply": "2024-06-03T15:16:09.495479Z" } }, "outputs": [ @@ -109,11 +109,11 @@ "text": [ "CmdStanPathfinder: model=bernoulli['method=pathfinder']\n", " csv_files:\n", - "\t/tmp/tmpimv2ege0/bernoullifbcxwakw/bernoulli-20240326162944.csv\n", + "\t/tmp/tmpy5plbz4g/bernoullio19cm8ts/bernoulli-20240603151609.csv\n", " output_files:\n", - "\t/tmp/tmpimv2ege0/bernoullifbcxwakw/bernoulli-20240326162944_0-stdout.txt\n", + "\t/tmp/tmpy5plbz4g/bernoullio19cm8ts/bernoulli-20240603151609_0-stdout.txt\n", "Metadata:\n", - "{'stan_version_major': 2, 'stan_version_minor': 34, 'stan_version_patch': 1, 'model': 'bernoulli_model', 'start_datetime': '2024-03-26 16:29:44 UTC', 'method': 'pathfinder', 'init_alpha': 0.001, 'tol_obj': 1e-12, 'tol_rel_obj': 10000, 'tol_grad': 1e-08, 'tol_rel_grad': 10000000.0, 'tol_param': 1e-08, 'history_size': 5, 'num_psis_draws': 1000, 'num_paths': 4, 'save_single_paths': 0, 'psis_resample': 1, 'calculate_lp': 1, 'max_lbfgs_iters': 1000, 'num_draws': 1000, 'num_elbo_draws': 25, 'id': 1, 'data_file': '/home/runner/.cmdstan/cmdstan-2.34.1/examples/bernoulli/bernoulli.data.json', 'init': 2, 'seed': 50890, 'diagnostic_file': '', 'refresh': 100, 'sig_figs': -1, 'profile_file': 'profile.csv', 'save_cmdstan_config': 0, 'num_threads': 1, 'stanc_version': 'stanc3 v2.34.0', 'stancflags': '', 'raw_header': 'lp_approx__,lp__,theta', 'column_names': ('lp_approx__', 'lp__', 'theta')}\n", + "{'stan_version_major': 2, 'stan_version_minor': 35, 'stan_version_patch': 0, 'model': 'bernoulli_model', 'start_datetime': '2024-06-03 15:16:09 UTC', 'method': 'pathfinder', 'init_alpha': 0.001, 'tol_obj': 1e-12, 'tol_rel_obj': 10000, 'tol_grad': 1e-08, 'tol_rel_grad': 10000000.0, 'tol_param': 1e-08, 'history_size': 5, 'num_psis_draws': 1000, 'num_paths': 4, 'save_single_paths': 'false', 'psis_resample': 'true', 'calculate_lp': 'true', 'max_lbfgs_iters': 1000, 'num_draws': 1000, 'num_elbo_draws': 25, 'id': 1, 'data_file': '/home/runner/.cmdstan/cmdstan-2.35.0/examples/bernoulli/bernoulli.data.json', 'init': 2, 'seed': 37888, 'diagnostic_file': '', 'refresh': 100, 'sig_figs': -1, 'profile_file': 'profile.csv', 'save_cmdstan_config': 'false', 'num_threads': 1, 'stanc_version': 'stanc3 v2.35.0', 'stancflags': '', 'raw_header': 'lp_approx__,lp__,theta', 'column_names': ('lp_approx__', 'lp__', 'theta')}\n", "\n" ] } @@ -145,10 +145,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:44.322023Z", - "iopub.status.busy": "2024-03-26T16:29:44.321649Z", - "iopub.status.idle": "2024-03-26T16:29:44.328711Z", - "shell.execute_reply": "2024-03-26T16:29:44.328190Z" + "iopub.execute_input": "2024-06-03T15:16:09.498714Z", + "iopub.status.busy": "2024-06-03T15:16:09.498384Z", + "iopub.status.idle": "2024-06-03T15:16:09.506298Z", + "shell.execute_reply": "2024-06-03T15:16:09.505764Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:44.331257Z", - "iopub.status.busy": "2024-03-26T16:29:44.330886Z", - "iopub.status.idle": "2024-03-26T16:29:44.335028Z", - "shell.execute_reply": "2024-03-26T16:29:44.334351Z" + "iopub.execute_input": "2024-06-03T15:16:09.508565Z", + "iopub.status.busy": "2024-06-03T15:16:09.508374Z", + "iopub.status.idle": "2024-06-03T15:16:09.512501Z", + "shell.execute_reply": "2024-06-03T15:16:09.511929Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:44.337482Z", - "iopub.status.busy": "2024-03-26T16:29:44.337102Z", - "iopub.status.idle": "2024-03-26T16:29:44.341146Z", - "shell.execute_reply": "2024-03-26T16:29:44.340523Z" + "iopub.execute_input": "2024-06-03T15:16:09.515022Z", + "iopub.status.busy": "2024-06-03T15:16:09.514578Z", + "iopub.status.idle": "2024-06-03T15:16:09.518838Z", + "shell.execute_reply": "2024-06-03T15:16:09.518209Z" } }, "outputs": [ @@ -235,10 +235,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:44.343774Z", - "iopub.status.busy": "2024-03-26T16:29:44.343296Z", - "iopub.status.idle": "2024-03-26T16:29:44.347590Z", - "shell.execute_reply": "2024-03-26T16:29:44.346955Z" + "iopub.execute_input": "2024-06-03T15:16:09.521282Z", + "iopub.status.busy": "2024-06-03T15:16:09.520928Z", + "iopub.status.idle": "2024-06-03T15:16:09.525033Z", + "shell.execute_reply": "2024-06-03T15:16:09.524349Z" } }, "outputs": [ @@ -246,7 +246,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[{'theta': array(0.278046)}, {'theta': array(0.189515)}, {'theta': array(0.28219)}, {'theta': array(0.174821)}]\n" + "[{'theta': array(0.244849)}, {'theta': array(0.0384281)}, {'theta': array(0.148251)}, {'theta': array(0.532504)}]\n" ] } ], @@ -270,10 +270,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:44.350084Z", - "iopub.status.busy": "2024-03-26T16:29:44.349681Z", - "iopub.status.idle": "2024-03-26T16:29:44.353504Z", - "shell.execute_reply": "2024-03-26T16:29:44.352850Z" + "iopub.execute_input": "2024-06-03T15:16:09.527587Z", + "iopub.status.busy": "2024-06-03T15:16:09.527198Z", + "iopub.status.idle": "2024-06-03T15:16:09.531009Z", + "shell.execute_reply": "2024-06-03T15:16:09.530368Z" } }, "outputs": [ @@ -281,7 +281,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[{'theta': array(0.151519)}, {'theta': array(0.156614)}, {'theta': array(0.066908)}]\n" + "[{'theta': array(0.295373)}, {'theta': array(0.223648)}, {'theta': array(0.238005)}]\n" ] } ], @@ -307,7 +307,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.19" } }, "nbformat": 4, diff --git a/docs/users-guide/examples/Run Generated Quantities.html b/docs/users-guide/examples/Run Generated Quantities.html index fd0543f3..d264cec3 100644 --- a/docs/users-guide/examples/Run Generated Quantities.html +++ b/docs/users-guide/examples/Run Generated Quantities.html @@ -6,7 +6,7 @@ - Generating new quantities of interest. — CmdStanPy 1.2.2 documentation + Generating new quantities of interest. — CmdStanPy 1.2.3 documentation @@ -65,7 +65,7 @@ @@ -320,13 +320,13 @@

    Example: add posterior predictive checks to
     data {
       int<lower=0> N;
    -  array[N] int<lower=0,upper=1> y;
    +  array[N] int<lower=0, upper=1> y;
     }
     parameters {
    -  real<lower=0,upper=1> theta;
    +  real<lower=0, upper=1> theta;
     }
     model {
    -  theta ~ beta(1,1);  // uniform prior on interval 0,1
    +  theta ~ beta(1, 1); // uniform prior on interval 0,1
       y ~ bernoulli(theta);
     }
     
    @@ -371,56 +371,32 @@ 

    Example: add posterior predictive checks to
    -16:29:46 - cmdstanpy - INFO - CmdStan start processing
    +15:16:11 - cmdstanpy - INFO - CmdStan start processing
     

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +
    -
    -
    -
    +
    -
    -
    -
    +
    -
    -
    -
    +
    @@ -435,7 +411,7 @@

    Example: add posterior predictive checks to
    -16:29:46 - cmdstanpy - INFO - CmdStan done processing.
    +15:16:11 - cmdstanpy - INFO - CmdStan done processing.
     

    @@ -492,27 +468,27 @@

    Example: add posterior predictive checks to
    -16:29:46 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc
    -
    -

    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc
    +15:16:11 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc
    +15:16:18 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc
     
    @@ -580,68 +549,19 @@

    Example: add posterior predictive checks to -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [1] start processing
    -
    -

    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [2] start processing
    -
    -
    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [1] done processing
    -
    -
    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [3] start processing
    -
    -
    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [2] done processing
    -
    -
    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [4] start processing
    -
    -
    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [3] done processing
    -
    -
    -16:30:00 - cmdstanpy - INFO - Chain [4] done processing
    +15:16:18 - cmdstanpy - INFO - Chain [1] start processing
    +15:16:18 - cmdstanpy - INFO - Chain [2] start processing
    +15:16:18 - cmdstanpy - INFO - Chain [2] done processing
    +15:16:18 - cmdstanpy - INFO - Chain [3] start processing
    +15:16:18 - cmdstanpy - INFO - Chain [1] done processing
    +15:16:18 - cmdstanpy - INFO - Chain [4] start processing
    +15:16:18 - cmdstanpy - INFO - Chain [3] done processing
    +15:16:18 - cmdstanpy - INFO - Chain [4] done processing
     

    The generate_quantities method returns a CmdStanGQ object which contains the values for all variables in the generated quantities block of the program bernoulli_ppc.stan. Unlike the output from the sample method, it doesn’t contain any information on the joint log probability density, sampler state, or parameters or transformed parameter values.

    @@ -661,31 +581,10 @@

    Example: add posterior predictive checks to
    -16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    -
    - -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    -
    -
    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    -
    -
    -
    -
    -
    -
    -
    -16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    +15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    +15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    +15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    +15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
     
    @@ -694,18 +593,18 @@

    Example: add posterior predictive checks to
     (1000, 4, 10) ('y_rep[1]', 'y_rep[2]', 'y_rep[3]', 'y_rep[4]', 'y_rep[5]', 'y_rep[6]', 'y_rep[7]', 'y_rep[8]', 'y_rep[9]', 'y_rep[10]')
    -[[0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]
    - [0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]
    - [0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]
    - [0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]]
    -[[0. 0. 0. 1. 0. 0. 0. 0. 1. 1.]
    - [0. 0. 0. 1. 0. 0. 0. 0. 1. 1.]
    - [0. 0. 0. 1. 0. 0. 0. 0. 1. 1.]
    - [0. 0. 0. 1. 0. 0. 0. 0. 0. 1.]]
    -[[0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]
    - [0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]
    - [0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]
    - [0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]]
    +[[0. 1. 0. 1. 0. 1. 0. 1. 0. 1.]
    + [0. 1. 0. 1. 0. 1. 1. 1. 1. 1.]
    + [0. 1. 0. 1. 0. 1. 0. 1. 1. 1.]
    + [0. 1. 0. 1. 0. 1. 0. 1. 0. 1.]]
    +[[0. 1. 0. 0. 0. 1. 0. 0. 0. 0.]
    + [0. 1. 0. 1. 0. 1. 1. 1. 0. 0.]
    + [0. 1. 0. 0. 0. 1. 1. 1. 0. 0.]
    + [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]
    +[[1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]
    + [1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]
    + [1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]
    + [1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]]
     

    We can also use draws_pd(inc_sample=True) to get a pandas DataFrame which combines the input drawset with the generated quantities.

    @@ -725,7 +624,7 @@

    Example: add posterior predictive checks to
    -16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
    +15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with "save_warmup=True".
     
    @@ -785,42 +684,44 @@

    Example: add posterior predictive checks to 0.0 0.0 0.0 - 1.0 - 1.0 2 - -6.77679 - 0.998779 - 1.17203 + -6.75063 + 0.995885 + 0.871561 2.0 3.0 0.0 - 6.94984 - 0.220845 + 6.78282 + 0.259094 1.0 3.0 ... + 1.0 0.0 0.0 0.0 - 0.0 - 0.0 - 0.0 - 0.0 + 1.0 0.0 1.0 1.0 + 0.0 + 0.0 @@ -862,7 +761,7 @@

    Example: add posterior predictive checks to theta as well as y_rep values. For models which are difficult to fit, i.e., when producing a sample is computationally expensive, the generate_quantities method is preferred.

    diff --git a/docs/users-guide/examples/Run Generated Quantities.ipynb b/docs/users-guide/examples/Run Generated Quantities.ipynb index 80477c75..2c40a829 100644 --- a/docs/users-guide/examples/Run Generated Quantities.ipynb +++ b/docs/users-guide/examples/Run Generated Quantities.ipynb @@ -42,10 +42,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:46.036648Z", - "iopub.status.busy": "2024-03-26T16:29:46.036452Z", - "iopub.status.idle": "2024-03-26T16:29:46.441221Z", - "shell.execute_reply": "2024-03-26T16:29:46.440481Z" + "iopub.execute_input": "2024-06-03T15:16:11.130769Z", + "iopub.status.busy": "2024-06-03T15:16:11.130570Z", + "iopub.status.idle": "2024-06-03T15:16:11.580932Z", + "shell.execute_reply": "2024-06-03T15:16:11.580097Z" } }, "outputs": [ @@ -55,13 +55,13 @@ "text": [ "data {\n", " int N;\n", - " array[N] int y;\n", + " array[N] int y;\n", "}\n", "parameters {\n", - " real theta;\n", + " real theta;\n", "}\n", "model {\n", - " theta ~ beta(1,1); // uniform prior on interval 0,1\n", + " theta ~ beta(1, 1); // uniform prior on interval 0,1\n", " y ~ bernoulli(theta);\n", "}\n", "\n" @@ -94,10 +94,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:46.444455Z", - "iopub.status.busy": "2024-03-26T16:29:46.443867Z", - "iopub.status.idle": "2024-03-26T16:29:46.502957Z", - "shell.execute_reply": "2024-03-26T16:29:46.502392Z" + "iopub.execute_input": "2024-06-03T15:16:11.584396Z", + "iopub.status.busy": "2024-06-03T15:16:11.583656Z", + "iopub.status.idle": "2024-06-03T15:16:11.623878Z", + "shell.execute_reply": "2024-06-03T15:16:11.623146Z" } }, "outputs": [ @@ -132,10 +132,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:46.505763Z", - "iopub.status.busy": "2024-03-26T16:29:46.505069Z", - "iopub.status.idle": "2024-03-26T16:29:46.709551Z", - "shell.execute_reply": "2024-03-26T16:29:46.708948Z" + "iopub.execute_input": "2024-06-03T15:16:11.626769Z", + "iopub.status.busy": "2024-06-03T15:16:11.626259Z", + "iopub.status.idle": "2024-06-03T15:16:11.764092Z", + "shell.execute_reply": "2024-06-03T15:16:11.763407Z" } }, "outputs": [ @@ -143,13 +143,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:29:46 - cmdstanpy - INFO - CmdStan start processing\n" + "15:16:11 - cmdstanpy - INFO - CmdStan start processing\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d8220583290146688fa0dcd1925ad1e5", + "model_id": "4cfbf0700df24ca996b29e5e17fcff1d", "version_major": 2, "version_minor": 0 }, @@ -163,7 +163,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "46749833be2f497f927fdb925199d231", + "model_id": "e380ccf194c34b2fb539d4aa4d457eb9", "version_major": 2, "version_minor": 0 }, @@ -177,7 +177,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f52d3bec872b4454b3ab4912a4ccd42a", + "model_id": "0b26c6fe294946a7b1858e300334b22b", "version_major": 2, "version_minor": 0 }, @@ -191,7 +191,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da5c161a59bc4cdaa557c3421c211f32", + "model_id": "2f22749b12ea4e46a23a088fd606ca3f", "version_major": 2, "version_minor": 0 }, @@ -234,7 +234,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:29:46 - cmdstanpy - INFO - CmdStan done processing.\n" + "15:16:11 - cmdstanpy - INFO - CmdStan done processing.\n" ] }, { @@ -262,10 +262,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:46.712397Z", - "iopub.status.busy": "2024-03-26T16:29:46.711862Z", - "iopub.status.idle": "2024-03-26T16:29:46.756228Z", - "shell.execute_reply": "2024-03-26T16:29:46.755501Z" + "iopub.execute_input": "2024-06-03T15:16:11.767175Z", + "iopub.status.busy": "2024-06-03T15:16:11.766711Z", + "iopub.status.idle": "2024-06-03T15:16:11.814023Z", + "shell.execute_reply": "2024-06-03T15:16:11.813251Z" } }, "outputs": [ @@ -304,40 +304,40 @@ " \n", " \n", " lp__\n", - " -7.297320\n", - " 0.017912\n", - " 0.755274\n", - " -8.851160\n", - " -6.996700\n", - " -6.750000\n", - " 1778.01\n", - " 36286.0\n", - " 1.00036\n", + " -7.265470\n", + " 0.017901\n", + " 0.71385\n", + " -8.753410\n", + " -6.974640\n", + " -6.749960\n", + " 1590.15\n", + " 30002.8\n", + " 1.00045\n", " \n", " \n", " theta\n", - " 0.250792\n", - " 0.003315\n", - " 0.121648\n", - " 0.076211\n", - " 0.240263\n", - " 0.470491\n", - " 1346.53\n", - " 27480.2\n", - " 1.00109\n", + " 0.249812\n", + " 0.002907\n", + " 0.11983\n", + " 0.080009\n", + " 0.234871\n", + " 0.474189\n", + " 1699.67\n", + " 32069.3\n", + " 1.00081\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " Mean MCSE StdDev 5% 50% 95% N_Eff \\\n", - "lp__ -7.297320 0.017912 0.755274 -8.851160 -6.996700 -6.750000 1778.01 \n", - "theta 0.250792 0.003315 0.121648 0.076211 0.240263 0.470491 1346.53 \n", + " Mean MCSE StdDev 5% 50% 95% N_Eff \\\n", + "lp__ -7.265470 0.017901 0.71385 -8.753410 -6.974640 -6.749960 1590.15 \n", + "theta 0.249812 0.002907 0.11983 0.080009 0.234871 0.474189 1699.67 \n", "\n", " N_Eff/s R_hat \n", - "lp__ 36286.0 1.00036 \n", - "theta 27480.2 1.00109 " + "lp__ 30002.8 1.00045 \n", + "theta 32069.3 1.00081 " ] }, "execution_count": 4, @@ -361,10 +361,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:29:46.759240Z", - "iopub.status.busy": "2024-03-26T16:29:46.758703Z", - "iopub.status.idle": "2024-03-26T16:30:00.640995Z", - "shell.execute_reply": "2024-03-26T16:30:00.640392Z" + "iopub.execute_input": "2024-06-03T15:16:11.817140Z", + "iopub.status.busy": "2024-06-03T15:16:11.816593Z", + "iopub.status.idle": "2024-06-03T15:16:18.438529Z", + "shell.execute_reply": "2024-06-03T15:16:18.437911Z" } }, "outputs": [ @@ -372,14 +372,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:29:46 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc\n" + "15:16:11 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc\n" + "15:16:18 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli_ppc\n" ] }, { @@ -430,10 +430,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:00.643833Z", - "iopub.status.busy": "2024-03-26T16:30:00.643524Z", - "iopub.status.idle": "2024-03-26T16:30:00.701815Z", - "shell.execute_reply": "2024-03-26T16:30:00.701030Z" + "iopub.execute_input": "2024-06-03T15:16:18.441163Z", + "iopub.status.busy": "2024-06-03T15:16:18.440895Z", + "iopub.status.idle": "2024-06-03T15:16:18.502457Z", + "shell.execute_reply": "2024-06-03T15:16:18.501873Z" } }, "outputs": [ @@ -441,56 +441,56 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [1] start processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [1] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [2] start processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [2] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [1] done processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [2] done processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [3] start processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [3] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [2] done processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [1] done processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [4] start processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [4] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [3] done processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [3] done processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - INFO - Chain [4] done processing\n" + "15:16:18 - cmdstanpy - INFO - Chain [4] done processing\n" ] } ], @@ -512,10 +512,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:00.704656Z", - "iopub.status.busy": "2024-03-26T16:30:00.704243Z", - "iopub.status.idle": "2024-03-26T16:30:00.728113Z", - "shell.execute_reply": "2024-03-26T16:30:00.727557Z" + "iopub.execute_input": "2024-06-03T15:16:18.505505Z", + "iopub.status.busy": "2024-06-03T15:16:18.505010Z", + "iopub.status.idle": "2024-06-03T15:16:18.528731Z", + "shell.execute_reply": "2024-06-03T15:16:18.528055Z" } }, "outputs": [ @@ -523,28 +523,28 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" + "15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" + "15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" + "15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" + "15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" ] }, { @@ -552,18 +552,18 @@ "output_type": "stream", "text": [ "(1000, 4, 10) ('y_rep[1]', 'y_rep[2]', 'y_rep[3]', 'y_rep[4]', 'y_rep[5]', 'y_rep[6]', 'y_rep[7]', 'y_rep[8]', 'y_rep[9]', 'y_rep[10]')\n", - "[[0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]\n", - " [0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]\n", - " [0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]\n", - " [0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]]\n", - "[[0. 0. 0. 1. 0. 0. 0. 0. 1. 1.]\n", - " [0. 0. 0. 1. 0. 0. 0. 0. 1. 1.]\n", - " [0. 0. 0. 1. 0. 0. 0. 0. 1. 1.]\n", - " [0. 0. 0. 1. 0. 0. 0. 0. 0. 1.]]\n", - "[[0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]\n", - " [0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]\n", - " [0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]\n", - " [0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]]\n" + "[[0. 1. 0. 1. 0. 1. 0. 1. 0. 1.]\n", + " [0. 1. 0. 1. 0. 1. 1. 1. 1. 1.]\n", + " [0. 1. 0. 1. 0. 1. 0. 1. 1. 1.]\n", + " [0. 1. 0. 1. 0. 1. 0. 1. 0. 1.]]\n", + "[[0. 1. 0. 0. 0. 1. 0. 0. 0. 0.]\n", + " [0. 1. 0. 1. 0. 1. 1. 1. 0. 0.]\n", + " [0. 1. 0. 0. 0. 1. 1. 1. 0. 0.]\n", + " [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]\n", + "[[1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]\n", + " [1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]\n", + " [1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]\n", + " [1. 0. 0. 0. 1. 0. 1. 1. 0. 0.]]\n" ] } ], @@ -585,10 +585,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:00.730757Z", - "iopub.status.busy": "2024-03-26T16:30:00.730373Z", - "iopub.status.idle": "2024-03-26T16:30:00.752951Z", - "shell.execute_reply": "2024-03-26T16:30:00.752316Z" + "iopub.execute_input": "2024-06-03T15:16:18.531254Z", + "iopub.status.busy": "2024-06-03T15:16:18.531048Z", + "iopub.status.idle": "2024-06-03T15:16:18.554177Z", + "shell.execute_reply": "2024-06-03T15:16:18.553436Z" } }, "outputs": [ @@ -596,7 +596,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:30:00 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" + "15:16:18 - cmdstanpy - WARNING - Sample doesn't contain draws from warmup iterations, rerun sampler with \"save_warmup=True\".\n" ] }, { @@ -653,42 +653,44 @@ " \n", " \n", " 0\n", - " -6.88937\n", - " 0.797647\n", - " 1.17203\n", + " -6.87115\n", + " 0.885792\n", + " 0.871561\n", " 2.0\n", " 3.0\n", " 0.0\n", - " 7.55922\n", - " 0.320028\n", + " 7.50910\n", + " 0.191638\n", " 1.0\n", " 1.0\n", " ...\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", " 1.0\n", " 0.0\n", + " 1.0\n", " 0.0\n", + " 1.0\n", " 0.0\n", + " 1.0\n", " 0.0\n", + " 1.0\n", " \n", " \n", " 1\n", - " -6.92103\n", - " 0.987890\n", - " 1.17203\n", - " 1.0\n", + " -6.75402\n", + " 0.999116\n", + " 0.871561\n", " 1.0\n", + " 3.0\n", " 0.0\n", - " 6.96935\n", - " 0.327844\n", + " 6.86016\n", + " 0.236473\n", " 1.0\n", " 2.0\n", " ...\n", " 0.0\n", + " 1.0\n", + " 0.0\n", " 0.0\n", " 0.0\n", " 1.0\n", @@ -696,32 +698,30 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 1.0\n", - " 1.0\n", " \n", " \n", " 2\n", - " -6.77679\n", - " 0.998779\n", - " 1.17203\n", + " -6.75063\n", + " 0.995885\n", + " 0.871561\n", " 2.0\n", " 3.0\n", " 0.0\n", - " 6.94984\n", - " 0.220845\n", + " 6.78282\n", + " 0.259094\n", " 1.0\n", " 3.0\n", " ...\n", + " 1.0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 1.0\n", " 0.0\n", " 1.0\n", " 1.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", "\n", @@ -730,19 +730,19 @@ ], "text/plain": [ " lp__ accept_stat__ stepsize__ treedepth__ n_leapfrog__ divergent__ \\\n", - "0 -6.88937 0.797647 1.17203 2.0 3.0 0.0 \n", - "1 -6.92103 0.987890 1.17203 1.0 1.0 0.0 \n", - "2 -6.77679 0.998779 1.17203 2.0 3.0 0.0 \n", + "0 -6.87115 0.885792 0.871561 2.0 3.0 0.0 \n", + "1 -6.75402 0.999116 0.871561 1.0 3.0 0.0 \n", + "2 -6.75063 0.995885 0.871561 2.0 3.0 0.0 \n", "\n", " energy__ theta chain__ iter__ ... y_rep[1] y_rep[2] y_rep[3] \\\n", - "0 7.55922 0.320028 1.0 1.0 ... 0.0 0.0 0.0 \n", - "1 6.96935 0.327844 1.0 2.0 ... 0.0 0.0 0.0 \n", - "2 6.94984 0.220845 1.0 3.0 ... 0.0 0.0 0.0 \n", + "0 7.50910 0.191638 1.0 1.0 ... 0.0 1.0 0.0 \n", + "1 6.86016 0.236473 1.0 2.0 ... 0.0 1.0 0.0 \n", + "2 6.78282 0.259094 1.0 3.0 ... 1.0 0.0 0.0 \n", "\n", " y_rep[4] y_rep[5] y_rep[6] y_rep[7] y_rep[8] y_rep[9] y_rep[10] \n", - "0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 \n", - "1 1.0 0.0 0.0 0.0 0.0 1.0 1.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 1.0 1.0 \n", + "0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 \n", + "1 0.0 0.0 1.0 0.0 0.0 0.0 0.0 \n", + "2 0.0 1.0 0.0 1.0 1.0 0.0 0.0 \n", "\n", "[3 rows x 21 columns]" ] @@ -783,7 +783,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.19" }, "vscode": { "interpreter": { @@ -793,46 +793,106 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ab955b93cd4fc0b4d308eed5ed70ee": { + "01ae8845b9744726b375b474a2fb1832": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": "blue", + "description_width": "" + } + }, + "0a48800af18a41eaa778ff6ebae6edcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b26c6fe294946a7b1858e300334b22b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_079e4aa3f76546339441ec3bf3e9f50b", - "placeholder": "​", - "style": "IPY_MODEL_aa1da1cfce1e48d7b1893908912b743f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9af8296cb67b451cbf24099d478447cc", + "IPY_MODEL_51effb59049b4dc6bb02f30a88689a4c", + "IPY_MODEL_deba5a4904154441a1323ebc96bad147" + ], + "layout": "IPY_MODEL_168f11bc99574b60bd40023fd0a2c59d", "tabbable": null, - "tooltip": null, - "value": " 00:00 Sampling completed" + "tooltip": null } }, - "04f0d3c32e1c4d3785ff233e8546a3b2": { + "0fbcf0b8c63749fa9728912bf64650df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": "blue", - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "10b505fadfd84aa1b3cd8dd88a99666a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5ca1944c2cb6468788802f1dc4b4348c", + "placeholder": "​", + "style": "IPY_MODEL_ce20c810472943e59b0804a4fccbc7ed", + "tabbable": null, + "tooltip": null, + "value": "chain 4 " } }, - "079e4aa3f76546339441ec3bf3e9f50b": { + "168f11bc99574b60bd40023fd0a2c59d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -885,30 +945,7 @@ "width": null } }, - "0bd3a7ab41e5435a801932739cd5ee14": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b86307f5840f4717b92ac230a92c1ea7", - "placeholder": "​", - "style": "IPY_MODEL_64aaa916de0443259c62b9a950821463", - "tabbable": null, - "tooltip": null, - "value": "chain 3 " - } - }, - "104a5f127d1c4e5e8652f068de1a1d0e": { + "20d91b71ebef482388b57c466e281d6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -961,25 +998,31 @@ "width": null } }, - "10bfac88d68441b497aaef36aab0b23b": { + "2f22749b12ea4e46a23a088fd606ca3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_10b505fadfd84aa1b3cd8dd88a99666a", + "IPY_MODEL_73d4917a9e4743ebba47c08830ae4a3b", + "IPY_MODEL_8adab06573894b4cb2efdf94bf4fc8a4" + ], + "layout": "IPY_MODEL_86a16b2bee4e4f67ad138ae449dd2d85", + "tabbable": null, + "tooltip": null } }, - "25bff242c37c47db90917cf6f6b63e88": { + "3ef580d887ea4baa8b3d654ae64c9457": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1032,23 +1075,60 @@ "width": null } }, - "2759c543db6546689c6c66dd7793cd0e": { - "model_module": "@jupyter-widgets/controls", + "478821004f494384a3e0f73b4878f3b0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": "blue", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "29178bb17df2405d810e3c2bc30d80dd": { + "49e7f6cd779d4e1f83d355a7949745de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1063,33 +1143,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_104a5f127d1c4e5e8652f068de1a1d0e", + "layout": "IPY_MODEL_b4124d00885243b792a65b5c2068d1e4", "placeholder": "​", - "style": "IPY_MODEL_b55ac73097bd40dc88c4841bc6da65f4", + "style": "IPY_MODEL_f782805de24849ba84baf6c618a31db1", "tabbable": null, "tooltip": null, "value": " 00:00 Sampling completed" } }, - "2c4f551f9ca24aea91e4e41e1d3fca62": { + "4cfbf0700df24ca996b29e5e17fcff1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d95e93cec0e6430cb12a72b064892a74", + "IPY_MODEL_a9bc40e0f90d4d539051231a25e14dd0", + "IPY_MODEL_49e7f6cd779d4e1f83d355a7949745de" + ], + "layout": "IPY_MODEL_b0fb3674b1db4d39b50e5a8776f7a545", + "tabbable": null, + "tooltip": null } }, - "2d35e6bfb64f447bb5ca2bd8eadd7931": { + "4e4c13edc22a42d582c7117a1cb27dbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1142,7 +1228,7 @@ "width": null } }, - "333d5fa32c8f4afc8bab74bf2de628bb": { + "51effb59049b4dc6bb02f30a88689a4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1158,33 +1244,53 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd13fb45f2ee4cc7aaee9ec5ccdce3b7", + "layout": "IPY_MODEL_c454fa3bed30414390a1bff5e4b8b299", "max": 22.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2759c543db6546689c6c66dd7793cd0e", + "style": "IPY_MODEL_ee5e5a5e13d9438c87cf062651789e4d", "tabbable": null, "tooltip": null, "value": 22.0 } }, - "3a57ecb37c674a3bb7a09f06380f34b0": { + "51ff56f4e7ae49889796127929af49a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": "blue", - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "563a9577319b4279b2146bb92044d2ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "40fa2fa8776442dabff2e0d8efc97a10": { + "5ca1944c2cb6468788802f1dc4b4348c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1237,34 +1343,62 @@ "width": null } }, - "46749833be2f497f927fdb925199d231": { + "73d4917a9e4743ebba47c08830ae4a3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cc2103fbcb444c678e0787d5ac009d76", - "IPY_MODEL_333d5fa32c8f4afc8bab74bf2de628bb", - "IPY_MODEL_00ab955b93cd4fc0b4d308eed5ed70ee" - ], - "layout": "IPY_MODEL_25bff242c37c47db90917cf6f6b63e88", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_478821004f494384a3e0f73b4878f3b0", + "max": 22.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_890b98aa11984fc296f9fa0ad5950d6e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 22.0 } }, - "4bebdb23c6a84385b8e3810b42f6aa90": { - "model_module": "@jupyter-widgets/base", + "7933cee4a29049088520492f7c19d1d1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ef580d887ea4baa8b3d654ae64c9457", + "max": 22.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01ae8845b9744726b375b474a2fb1832", + "tabbable": null, + "tooltip": null, + "value": 22.0 + } + }, + "7e058df04d2e457f901aa8dd1d0bed6d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -1314,7 +1448,7 @@ "width": null } }, - "4c8ad1ce320d416d9f0546a70e011077": { + "86a16b2bee4e4f67ad138ae449dd2d85": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1367,7 +1501,113 @@ "width": null } }, - "51cc65b1dab74732a326e0813c790238": { + "890b98aa11984fc296f9fa0ad5950d6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": "blue", + "description_width": "" + } + }, + "8adab06573894b4cb2efdf94bf4fc8a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1cd419c54f948799ebb6aa23bcdbc8d", + "placeholder": "​", + "style": "IPY_MODEL_0fbcf0b8c63749fa9728912bf64650df", + "tabbable": null, + "tooltip": null, + "value": " 00:00 Sampling completed" + } + }, + "95e06971938b43429f0bbdb7817c1e85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9af8296cb67b451cbf24099d478447cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d155c1e363274d499602d457fe2df2ef", + "placeholder": "​", + "style": "IPY_MODEL_563a9577319b4279b2146bb92044d2ba", + "tabbable": null, + "tooltip": null, + "value": "chain 3 " + } + }, + "a9bc40e0f90d4d539051231a25e14dd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af34d62b00b146069e61714f7a634505", + "max": 22.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca4b74ddeab0493590015859ba32556d", + "tabbable": null, + "tooltip": null, + "value": 22.0 + } + }, + "af34d62b00b146069e61714f7a634505": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1420,7 +1660,7 @@ "width": null } }, - "6105bd9971de41869eacddfefee7ed55": { + "b0fb3674b1db4d39b50e5a8776f7a545": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1473,69 +1713,7 @@ "width": null } }, - "64aaa916de0443259c62b9a950821463": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "79fd2122d8c7480f90f92facc7b379cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4bebdb23c6a84385b8e3810b42f6aa90", - "max": 22.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04f0d3c32e1c4d3785ff233e8546a3b2", - "tabbable": null, - "tooltip": null, - "value": 22.0 - } - }, - "7d37d88f7fd94f858a1311c4633b682b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "822f36b9135d45708b47164ba5bac44f": { + "b2be26403e2c4ef1b097c90276b76365": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1588,25 +1766,60 @@ "width": null } }, - "89379932a0ea4cd890e51824c29592fb": { - "model_module": "@jupyter-widgets/controls", + "b4124d00885243b792a65b5c2068d1e4": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8f8c090234294827af7867a5a5180bf6": { + "b9523d00442c43efbaa118b156789248": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1621,31 +1834,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_51cc65b1dab74732a326e0813c790238", + "layout": "IPY_MODEL_b2be26403e2c4ef1b097c90276b76365", "placeholder": "​", - "style": "IPY_MODEL_2c4f551f9ca24aea91e4e41e1d3fca62", + "style": "IPY_MODEL_95e06971938b43429f0bbdb7817c1e85", "tabbable": null, "tooltip": null, - "value": " 00:00 Sampling completed" + "value": "chain 2 " } }, - "983dba80cf69498ab0871f2eb9d1069b": { + "bd5fb81809ef4e439a5f251232ff57f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": "blue", - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9e1a91cb16e045dfa9e79702013edce7": { + "c454fa3bed30414390a1bff5e4b8b299": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1698,7 +1913,7 @@ "width": null } }, - "a5ba78f0d6b449258594b70792b5c87d": { + "c9d7142f4dff4a98a5b5025a311723fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1751,25 +1966,23 @@ "width": null } }, - "aa1da1cfce1e48d7b1893908912b743f": { + "ca4b74ddeab0493590015859ba32556d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": "blue", + "description_width": "" } }, - "b55ac73097bd40dc88c4841bc6da65f4": { + "ce20c810472943e59b0804a4fccbc7ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1787,7 +2000,7 @@ "text_color": null } }, - "b86307f5840f4717b92ac230a92c1ea7": { + "d155c1e363274d499602d457fe2df2ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1840,33 +2053,7 @@ "width": null } }, - "b8919ce9a6be45919f23cbbc12a0d5a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c8ad1ce320d416d9f0546a70e011077", - "max": 22.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_983dba80cf69498ab0871f2eb9d1069b", - "tabbable": null, - "tooltip": null, - "value": 22.0 - } - }, - "bd13fb45f2ee4cc7aaee9ec5ccdce3b7": { + "d1cd419c54f948799ebb6aa23bcdbc8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1919,7 +2106,7 @@ "width": null } }, - "c039165d16c9452d916585c7d3e58b9f": { + "d95e93cec0e6430cb12a72b064892a74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1934,15 +2121,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2d35e6bfb64f447bb5ca2bd8eadd7931", + "layout": "IPY_MODEL_7e058df04d2e457f901aa8dd1d0bed6d", "placeholder": "​", - "style": "IPY_MODEL_fead15008e784056b17cfe54bdf4aa80", + "style": "IPY_MODEL_0a48800af18a41eaa778ff6ebae6edcb", "tabbable": null, "tooltip": null, "value": "chain 1 " } }, - "cc2103fbcb444c678e0787d5ac009d76": { + "deba5a4904154441a1323ebc96bad147": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1957,92 +2144,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d1afd8b2e292433da66af031a060885f", + "layout": "IPY_MODEL_c9d7142f4dff4a98a5b5025a311723fc", "placeholder": "​", - "style": "IPY_MODEL_7d37d88f7fd94f858a1311c4633b682b", + "style": "IPY_MODEL_bd5fb81809ef4e439a5f251232ff57f3", "tabbable": null, "tooltip": null, - "value": "chain 2 " - } - }, - "d1afd8b2e292433da66af031a060885f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d8220583290146688fa0dcd1925ad1e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c039165d16c9452d916585c7d3e58b9f", - "IPY_MODEL_b8919ce9a6be45919f23cbbc12a0d5a0", - "IPY_MODEL_29178bb17df2405d810e3c2bc30d80dd" - ], - "layout": "IPY_MODEL_6105bd9971de41869eacddfefee7ed55", - "tabbable": null, - "tooltip": null + "value": " 00:00 Sampling completed" } }, - "da5c161a59bc4cdaa557c3421c211f32": { + "e380ccf194c34b2fb539d4aa4d457eb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2057,16 +2167,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fa74efb787764dae83df11a5414a8ef2", - "IPY_MODEL_79fd2122d8c7480f90f92facc7b379cd", - "IPY_MODEL_de7894bcba02475d95329637fa78f1e7" + "IPY_MODEL_b9523d00442c43efbaa118b156789248", + "IPY_MODEL_7933cee4a29049088520492f7c19d1d1", + "IPY_MODEL_e4ffe79b91914487a6c89cd3a696eab3" ], - "layout": "IPY_MODEL_f4534d6e7dd74edfaf4f4393e84e040c", + "layout": "IPY_MODEL_4e4c13edc22a42d582c7117a1cb27dbb", "tabbable": null, "tooltip": null } }, - "de7894bcba02475d95329637fa78f1e7": { + "e4ffe79b91914487a6c89cd3a696eab3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2081,141 +2191,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_40fa2fa8776442dabff2e0d8efc97a10", + "layout": "IPY_MODEL_20d91b71ebef482388b57c466e281d6e", "placeholder": "​", - "style": "IPY_MODEL_10bfac88d68441b497aaef36aab0b23b", + "style": "IPY_MODEL_51ff56f4e7ae49889796127929af49a1", "tabbable": null, "tooltip": null, "value": " 00:00 Sampling completed" } }, - "e26e42d843e54aef9d35dc348adab5bb": { + "ee5e5a5e13d9438c87cf062651789e4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5ba78f0d6b449258594b70792b5c87d", - "max": 22.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3a57ecb37c674a3bb7a09f06380f34b0", - "tabbable": null, - "tooltip": null, - "value": 22.0 - } - }, - "f4534d6e7dd74edfaf4f4393e84e040c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f52d3bec872b4454b3ab4912a4ccd42a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0bd3a7ab41e5435a801932739cd5ee14", - "IPY_MODEL_e26e42d843e54aef9d35dc348adab5bb", - "IPY_MODEL_8f8c090234294827af7867a5a5180bf6" - ], - "layout": "IPY_MODEL_822f36b9135d45708b47164ba5bac44f", - "tabbable": null, - "tooltip": null - } - }, - "fa74efb787764dae83df11a5414a8ef2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9e1a91cb16e045dfa9e79702013edce7", - "placeholder": "​", - "style": "IPY_MODEL_89379932a0ea4cd890e51824c29592fb", - "tabbable": null, - "tooltip": null, - "value": "chain 4 " + "_view_name": "StyleView", + "bar_color": "blue", + "description_width": "" } }, - "fead15008e784056b17cfe54bdf4aa80": { + "f782805de24849ba84baf6c618a31db1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/docs/users-guide/examples/Using External C++.html b/docs/users-guide/examples/Using External C++.html index 6b17cd33..112b3c7f 100644 --- a/docs/users-guide/examples/Using External C++.html +++ b/docs/users-guide/examples/Using External C++.html @@ -6,7 +6,7 @@ - Advanced Topic: Using External C++ Functions — CmdStanPy 1.2.2 documentation + Advanced Topic: Using External C++ Functions — CmdStanPy 1.2.3 documentation @@ -65,7 +65,7 @@ diff --git a/docs/users-guide/examples/VI as Sampler Inits.html b/docs/users-guide/examples/VI as Sampler Inits.html index 72a53041..d233dc86 100644 --- a/docs/users-guide/examples/VI as Sampler Inits.html +++ b/docs/users-guide/examples/VI as Sampler Inits.html @@ -6,7 +6,7 @@ - Using Variational Estimates to Initialize the NUTS-HMC Sampler — CmdStanPy 1.2.2 documentation + Using Variational Estimates to Initialize the NUTS-HMC Sampler — CmdStanPy 1.2.3 documentation @@ -65,7 +65,7 @@ diff --git a/docs/users-guide/examples/Variational Inference.html b/docs/users-guide/examples/Variational Inference.html index de350720..eb49fc11 100644 --- a/docs/users-guide/examples/Variational Inference.html +++ b/docs/users-guide/examples/Variational Inference.html @@ -6,7 +6,7 @@ - Variational Inference using ADVI — CmdStanPy 1.2.2 documentation + Variational Inference using ADVI — CmdStanPy 1.2.3 documentation @@ -65,7 +65,7 @@ @@ -306,20 +306,13 @@

    Example: variational inference for model -
    -
    -
    -
    -16:30:04 - cmdstanpy - INFO - Chain [1] start processing
    -
    -
    -16:30:04 - cmdstanpy - INFO - Chain [1] done processing
    +15:16:22 - cmdstanpy - INFO - Chain [1] start processing
    +15:16:22 - cmdstanpy - INFO - Chain [1] done processing
     

    The class `CmdStanVB <https://mc-stan.org/cmdstanpy/api.html#cmdstanvb>`__ provides the following properties to access information about the parameter names, estimated means, and the sample:

    @@ -362,7 +355,7 @@

    Example: variational inference for model
    -0.228927
    +0.235248
     
    @@ -396,31 +389,10 @@

    Example: variational inference for model
    -16:30:04 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail
    -

    - -
    -
    -
    -
    -
    -16:30:21 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail
    -
    -
    -
    -
    -
    -
    -
    -16:30:21 - cmdstanpy - INFO - Chain [1] start processing
    -
    -
    -
    -
    -
    -
    -
    -16:30:21 - cmdstanpy - INFO - Chain [1] done processing
    +15:16:22 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail
    +15:16:31 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail
    +15:16:31 - cmdstanpy - INFO - Chain [1] start processing
    +15:16:31 - cmdstanpy - INFO - Chain [1] done processing
     
    @@ -462,28 +434,14 @@

    Example: variational inference for model -
    -
    -
    -
    -16:30:21 - cmdstanpy - INFO - Chain [1] start processing
    -
    -

    -
    -
    -
    -
    -
    -16:30:21 - cmdstanpy - INFO - Chain [1] done processing
    -
    -
    -16:30:21 - cmdstanpy - WARNING - The algorithm may not have converged.
    +15:16:31 - cmdstanpy - INFO - Chain [1] start processing
    +15:16:32 - cmdstanpy - INFO - Chain [1] done processing
    +15:16:32 - cmdstanpy - WARNING - The algorithm may not have converged.
     Proceeding because require_converged is set to False
     
    @@ -505,8 +463,8 @@

    Example: variational inference for model API documentation for a full description of all arguments.

    diff --git a/docs/users-guide/examples/Variational Inference.ipynb b/docs/users-guide/examples/Variational Inference.ipynb index 809a35ff..f85efa34 100644 --- a/docs/users-guide/examples/Variational Inference.ipynb +++ b/docs/users-guide/examples/Variational Inference.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:04.461512Z", - "iopub.status.busy": "2024-03-26T16:30:04.461313Z", - "iopub.status.idle": "2024-03-26T16:30:04.909486Z", - "shell.execute_reply": "2024-03-26T16:30:04.908727Z" + "iopub.execute_input": "2024-06-03T15:16:22.187334Z", + "iopub.status.busy": "2024-06-03T15:16:22.187132Z", + "iopub.status.idle": "2024-06-03T15:16:22.648512Z", + "shell.execute_reply": "2024-06-03T15:16:22.647755Z" } }, "outputs": [ @@ -49,14 +49,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:30:04 - cmdstanpy - INFO - Chain [1] start processing\n" + "15:16:22 - cmdstanpy - INFO - Chain [1] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:04 - cmdstanpy - INFO - Chain [1] done processing\n" + "15:16:22 - cmdstanpy - INFO - Chain [1] done processing\n" ] } ], @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:04.912629Z", - "iopub.status.busy": "2024-03-26T16:30:04.912204Z", - "iopub.status.idle": "2024-03-26T16:30:04.916012Z", - "shell.execute_reply": "2024-03-26T16:30:04.915339Z" + "iopub.execute_input": "2024-06-03T15:16:22.651575Z", + "iopub.status.busy": "2024-06-03T15:16:22.651022Z", + "iopub.status.idle": "2024-06-03T15:16:22.654943Z", + "shell.execute_reply": "2024-06-03T15:16:22.654317Z" }, "scrolled": true }, @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:04.918680Z", - "iopub.status.busy": "2024-03-26T16:30:04.918296Z", - "iopub.status.idle": "2024-03-26T16:30:04.921670Z", - "shell.execute_reply": "2024-03-26T16:30:04.920959Z" + "iopub.execute_input": "2024-06-03T15:16:22.657635Z", + "iopub.status.busy": "2024-06-03T15:16:22.657246Z", + "iopub.status.idle": "2024-06-03T15:16:22.660633Z", + "shell.execute_reply": "2024-06-03T15:16:22.659916Z" } }, "outputs": [ @@ -131,7 +131,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.228927\n" + "0.235248\n" ] } ], @@ -144,10 +144,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:04.923992Z", - "iopub.status.busy": "2024-03-26T16:30:04.923642Z", - "iopub.status.idle": "2024-03-26T16:30:04.926981Z", - "shell.execute_reply": "2024-03-26T16:30:04.926356Z" + "iopub.execute_input": "2024-06-03T15:16:22.663020Z", + "iopub.status.busy": "2024-06-03T15:16:22.662821Z", + "iopub.status.idle": "2024-06-03T15:16:22.666070Z", + "shell.execute_reply": "2024-06-03T15:16:22.665427Z" } }, "outputs": [ @@ -177,10 +177,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:04.929323Z", - "iopub.status.busy": "2024-03-26T16:30:04.928957Z", - "iopub.status.idle": "2024-03-26T16:30:21.609075Z", - "shell.execute_reply": "2024-03-26T16:30:21.608322Z" + "iopub.execute_input": "2024-06-03T15:16:22.668419Z", + "iopub.status.busy": "2024-06-03T15:16:22.668218Z", + "iopub.status.idle": "2024-06-03T15:16:31.974746Z", + "shell.execute_reply": "2024-06-03T15:16:31.973984Z" }, "tags": [ "raises-exception" @@ -191,28 +191,28 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:30:04 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail\n" + "15:16:22 - cmdstanpy - INFO - compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:21 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail\n" + "15:16:31 - cmdstanpy - INFO - compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/eta_should_fail\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:21 - cmdstanpy - INFO - Chain [1] start processing\n" + "15:16:31 - cmdstanpy - INFO - Chain [1] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:21 - cmdstanpy - INFO - Chain [1] done processing\n" + "15:16:31 - cmdstanpy - INFO - Chain [1] done processing\n" ] }, { @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:21.611786Z", - "iopub.status.busy": "2024-03-26T16:30:21.611575Z", - "iopub.status.idle": "2024-03-26T16:30:21.656310Z", - "shell.execute_reply": "2024-03-26T16:30:21.655745Z" + "iopub.execute_input": "2024-06-03T15:16:31.977689Z", + "iopub.status.busy": "2024-06-03T15:16:31.977454Z", + "iopub.status.idle": "2024-06-03T15:16:32.021831Z", + "shell.execute_reply": "2024-06-03T15:16:32.021098Z" } }, "outputs": [ @@ -256,21 +256,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "16:30:21 - cmdstanpy - INFO - Chain [1] start processing\n" + "15:16:31 - cmdstanpy - INFO - Chain [1] start processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:21 - cmdstanpy - INFO - Chain [1] done processing\n" + "15:16:32 - cmdstanpy - INFO - Chain [1] done processing\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "16:30:21 - cmdstanpy - WARNING - The algorithm may not have converged.\n", + "15:16:32 - cmdstanpy - WARNING - The algorithm may not have converged.\n", "Proceeding because require_converged is set to False\n" ] } @@ -291,10 +291,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-03-26T16:30:21.659303Z", - "iopub.status.busy": "2024-03-26T16:30:21.658885Z", - "iopub.status.idle": "2024-03-26T16:30:21.665849Z", - "shell.execute_reply": "2024-03-26T16:30:21.665162Z" + "iopub.execute_input": "2024-06-03T15:16:32.024592Z", + "iopub.status.busy": "2024-06-03T15:16:32.024363Z", + "iopub.status.idle": "2024-06-03T15:16:32.031908Z", + "shell.execute_reply": "2024-06-03T15:16:32.031350Z" } }, "outputs": [ @@ -304,8 +304,8 @@ "OrderedDict([('lp__', 0.0),\n", " ('log_p__', 0.0),\n", " ('log_g__', 0.0),\n", - " ('mu[1]', -0.0227764),\n", - " ('mu[2]', -0.057944)])" + " ('mu[1]', 0.0107279),\n", + " ('mu[2]', 0.006031)])" ] }, "execution_count": 7, @@ -341,7 +341,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.19" } }, "nbformat": 4, diff --git a/docs/users-guide/hello_world.html b/docs/users-guide/hello_world.html index db22686e..18e66b17 100644 --- a/docs/users-guide/hello_world.html +++ b/docs/users-guide/hello_world.html @@ -6,7 +6,7 @@ - “Hello, World!” — CmdStanPy 1.2.2 documentation + “Hello, World!” — CmdStanPy 1.2.3 documentation @@ -64,7 +64,7 @@ @@ -370,7 +370,7 @@

    The Stan model# inspect compiled model In [6]: print(model.exe_info()) -{'stan_version_major': '2', 'stan_version_minor': '34', 'stan_version_patch': '1', 'STAN_THREADS': 'false', 'STAN_MPI': 'false', 'STAN_OPENCL': 'false', 'STAN_NO_RANGE_CHECKS': 'false', 'STAN_CPP_OPTIMS': 'false'} +{'stan_version_major': '2', 'stan_version_minor': '35', 'stan_version_patch': '0', 'STAN_THREADS': 'false', 'STAN_MPI': 'false', 'STAN_OPENCL': 'false', 'STAN_NO_RANGE_CHECKS': 'false', 'STAN_CPP_OPTIMS': 'false'} @@ -444,13 +444,13 @@

    Accessing the results
    # access model variable by name
     In [9]: print(fit.stan_variable('theta'))
    -[0.174379 0.142577 0.104175 ... 0.296568 0.275516 0.289409]
    +[0.346358 0.363043 0.457438 ... 0.184323 0.446334 0.167843]
     
     In [10]: print(fit.draws_pd('theta')[:3])
           theta
    -0  0.174379
    -1  0.142577
    -2  0.104175
    +0  0.346358
    +1  0.363043
    +2  0.457438
     
     In [11]: print(fit.draws_xr('theta'))
     <xarray.Dataset> Size: 40kB
    @@ -459,9 +459,9 @@ 

    Accessing the results * chain (chain) int64 32B 1 2 3 4 * draw (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999 Data variables: - theta (chain, draw) float64 32kB 0.1744 0.1426 0.1042 ... 0.2755 0.2894 + theta (chain, draw) float64 32kB 0.3464 0.363 0.4574 ... 0.4463 0.1678 Attributes: - stan_version: 2.34.1 + stan_version: 2.35.0 model: bernoulli_model num_draws_sampling: 1000 @@ -490,17 +490,17 @@

    Accessing the resultsIn [15]: fit.draws_pd() Out[15]: chain__ iter__ draw__ ... divergent__ energy__ theta -0 1.0 1.0 1.0 ... 0.0 6.96995 0.174379 -1 1.0 2.0 2.0 ... 0.0 7.23168 0.142577 -2 1.0 3.0 3.0 ... 0.0 8.29890 0.104175 -3 1.0 4.0 4.0 ... 0.0 8.29236 0.083123 -4 1.0 5.0 5.0 ... 0.0 8.59298 0.076468 +0 1.0 1.0 1.0 ... 0.0 7.67257 0.346358 +1 1.0 2.0 2.0 ... 0.0 7.13510 0.363043 +2 1.0 3.0 3.0 ... 0.0 7.85056 0.457438 +3 1.0 4.0 4.0 ... 0.0 7.67333 0.214156 +4 1.0 5.0 5.0 ... 0.0 7.98950 0.327391 ... ... ... ... ... ... ... ... -3995 4.0 996.0 3996.0 ... 0.0 7.11186 0.362054 -3996 4.0 997.0 3997.0 ... 0.0 7.09438 0.333609 -3997 4.0 998.0 3998.0 ... 0.0 6.90865 0.296568 -3998 4.0 999.0 3999.0 ... 0.0 6.79980 0.275516 -3999 4.0 1000.0 4000.0 ... 0.0 6.79844 0.289409 +3995 4.0 996.0 3996.0 ... 0.0 7.21214 0.297294 +3996 4.0 997.0 3997.0 ... 0.0 6.84100 0.230654 +3997 4.0 998.0 3998.0 ... 0.0 6.91366 0.184323 +3998 4.0 999.0 3999.0 ... 0.0 7.93451 0.446334 +3999 4.0 1000.0 4000.0 ... 0.0 7.60918 0.167843 [4000 rows x 11 columns]

    @@ -512,13 +512,13 @@

    Accessing the resultsdiag_e In [17]: print(fit.metric) -[[0.548827] - [0.618353] - [0.488154] - [0.506284]] +[[0.558439] + [0.419612] + [0.570816] + [0.471435]] In [18]: print(fit.step_size) -[0.916475 0.945805 0.890823 1.05791 ] +[0.776642 1.19095 0.971258 1.03637 ]

    The CmdStanMCMC object also provides access to metadata about the model and the sampler run.

    @@ -526,7 +526,7 @@

    Accessing the resultsbernoulli_model In [20]: print(fit.metadata.cmdstan_config['seed']) -5650 +90219 @@ -542,8 +542,8 @@

    CmdStan utilities:
    In [21]: fit.summary()
     Out[21]: 
                Mean      MCSE    StdDev  ...    N_Eff  N_Eff/s    R_hat
    -lp__  -7.244140  0.016066  0.686744  ...  1827.16  45679.0  1.00054
    -theta  0.249347  0.003168  0.116642  ...  1356.00  33900.0  1.00428
    +lp__  -7.259150  0.021195  0.728839  ...  1182.45  23185.4  1.00573
    +theta  0.249476  0.003148  0.118158  ...  1408.51  27617.8  1.00640
     
     [2 rows x 9 columns]
     
    @@ -555,7 +555,7 @@

    CmdStan utilities: diagnose() method runs this utility and prints the output to the console.

    In [22]: print(fit.diagnose())
    -Processing csv files: /tmp/tmpgvv426mx/bernoullig33uprfe/bernoulli-20240326163037_1.csv, /tmp/tmpgvv426mx/bernoullig33uprfe/bernoulli-20240326163037_2.csv, /tmp/tmpgvv426mx/bernoullig33uprfe/bernoulli-20240326163037_3.csv, /tmp/tmpgvv426mx/bernoullig33uprfe/bernoulli-20240326163037_4.csv
    +Processing csv files: /tmp/tmpxrifw9p7/bernoullix5j71i2y/bernoulli-20240603151640_1.csv, /tmp/tmpxrifw9p7/bernoullix5j71i2y/bernoulli-20240603151640_2.csv, /tmp/tmpxrifw9p7/bernoullix5j71i2y/bernoulli-20240603151640_3.csv, /tmp/tmpxrifw9p7/bernoullix5j71i2y/bernoulli-20240603151640_4.csv
     
     Checking sampler transitions treedepth.
     Treedepth satisfactory for all transitions.
    diff --git a/docs/users-guide/outputs.html b/docs/users-guide/outputs.html
    index 7f925524..6ec9b383 100644
    --- a/docs/users-guide/outputs.html
    +++ b/docs/users-guide/outputs.html
    @@ -6,7 +6,7 @@
         
         
     
    -    Controlling Outputs — CmdStanPy 1.2.2 documentation
    +    Controlling Outputs — CmdStanPy 1.2.3 documentation
         
         
     
    @@ -64,7 +64,7 @@
       
     
    @@ -307,15 +307,15 @@ 

    CSV File OutputsIn [7]: print(fit) CmdStanMCMC: model=bernoulli chains=4['method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] csv_files: - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_1.csv - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_2.csv - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_3.csv - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_4.csv + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_1.csv + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_2.csv + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_3.csv + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_4.csv output_files: - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_0-stdout.txt - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_1-stdout.txt - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_2-stdout.txt - /tmp/tmpgvv426mx/bernoulliigzvjuln/bernoulli-20240326163037_3-stdout.txt + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_0-stdout.txt + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_1-stdout.txt + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_2-stdout.txt + /tmp/tmpxrifw9p7/bernoullixihd21f3/bernoulli-20240603151640_3-stdout.txt

    The output_dir argument is an optional argument which specifies @@ -329,10 +329,10 @@

    CSV File OutputsINFO:cmdstanpy:CmdStan done processing. In [9]: !ls outputs/ -bernoulli-20240326163037_0-stdout.txt bernoulli-20240326163037_2.csv -bernoulli-20240326163037_1-stdout.txt bernoulli-20240326163037_3-stdout.txt -bernoulli-20240326163037_1.csv bernoulli-20240326163037_3.csv -bernoulli-20240326163037_2-stdout.txt bernoulli-20240326163037_4.csv +bernoulli-20240603151640_0-stdout.txt bernoulli-20240603151640_2.csv +bernoulli-20240603151640_1-stdout.txt bernoulli-20240603151640_3-stdout.txt +bernoulli-20240603151640_1.csv bernoulli-20240603151640_3.csv +bernoulli-20240603151640_2-stdout.txt bernoulli-20240603151640_4.csv

    Alternatively, the save_csvfiles() function moves the CSV files @@ -345,8 +345,8 @@

    CSV File OutputsIn [11]: fit.save_csvfiles(dir='some/path') In [12]: !ls some/path -bernoulli-20240326163037_1.csv bernoulli-20240326163037_3.csv -bernoulli-20240326163037_2.csv bernoulli-20240326163037_4.csv +bernoulli-20240603151640_1.csv bernoulli-20240603151640_3.csv +bernoulli-20240603151640_2.csv bernoulli-20240603151640_4.csv @@ -359,10 +359,10 @@

    LoggingINFO:cmdstanpy:Chain [2] start processing INFO:cmdstanpy:Chain [3] start processing INFO:cmdstanpy:Chain [4] start processing -INFO:cmdstanpy:Chain [1] done processing -INFO:cmdstanpy:Chain [4] done processing INFO:cmdstanpy:Chain [3] done processing INFO:cmdstanpy:Chain [2] done processing +INFO:cmdstanpy:Chain [1] done processing +INFO:cmdstanpy:Chain [4] done processing

    This output is managed through the built-in logging module. For example, it can be disabled entirely:

    @@ -409,48 +409,48 @@

    Logging ....: for line in logs.readlines(): ....: print(line.strip()) ....: -16:30:38 - cmdstanpy - DEBUG - cmd: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli info +15:16:41 - cmdstanpy - DEBUG - cmd: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli info cwd: None -16:30:38 - cmdstanpy - INFO - CmdStan start processing -16:30:38 - cmdstanpy - DEBUG - idx 0 -16:30:38 - cmdstanpy - DEBUG - idx 1 -16:30:38 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 -16:30:38 - cmdstanpy - DEBUG - idx 2 -16:30:38 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 -16:30:38 - cmdstanpy - DEBUG - idx 3 -16:30:38 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=1', 'random', 'seed=23084', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_1.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] -16:30:38 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 -16:30:38 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=2', 'random', 'seed=23084', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_2.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] -16:30:38 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 -16:30:38 - cmdstanpy - INFO - Chain [1] start processing -16:30:38 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=3', 'random', 'seed=23084', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_3.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] -16:30:38 - cmdstanpy - INFO - Chain [2] start processing -16:30:38 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=4', 'random', 'seed=23084', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_4.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] -16:30:38 - cmdstanpy - INFO - Chain [3] start processing -16:30:38 - cmdstanpy - INFO - Chain [4] start processing -16:30:38 - cmdstanpy - INFO - Chain [1] done processing -16:30:38 - cmdstanpy - INFO - Chain [2] done processing -16:30:38 - cmdstanpy - INFO - Chain [3] done processing -16:30:38 - cmdstanpy - INFO - Chain [4] done processing -16:30:38 - cmdstanpy - DEBUG - runset +15:16:41 - cmdstanpy - INFO - CmdStan start processing +15:16:41 - cmdstanpy - DEBUG - idx 0 +15:16:41 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 +15:16:41 - cmdstanpy - DEBUG - idx 1 +15:16:41 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=1', 'random', 'seed=3968', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_1.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] +15:16:41 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 +15:16:41 - cmdstanpy - INFO - Chain [1] start processing +15:16:41 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=2', 'random', 'seed=3968', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_2.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] +15:16:41 - cmdstanpy - DEBUG - idx 2 +15:16:41 - cmdstanpy - INFO - Chain [2] start processing +15:16:41 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 +15:16:41 - cmdstanpy - DEBUG - idx 3 +15:16:41 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=3', 'random', 'seed=3968', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_3.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] +15:16:41 - cmdstanpy - DEBUG - running CmdStan, num_threads: 1 +15:16:41 - cmdstanpy - INFO - Chain [3] start processing +15:16:41 - cmdstanpy - DEBUG - CmdStan args: ['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=4', 'random', 'seed=3968', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_4.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] +15:16:41 - cmdstanpy - INFO - Chain [4] start processing +15:16:41 - cmdstanpy - INFO - Chain [1] done processing +15:16:41 - cmdstanpy - INFO - Chain [2] done processing +15:16:41 - cmdstanpy - INFO - Chain [4] done processing +15:16:41 - cmdstanpy - INFO - Chain [3] done processing +15:16:41 - cmdstanpy - DEBUG - runset RunSet: chains=4, chain_ids=[1, 2, 3, 4], num_processes=4 cmd (chain 1): -['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=1', 'random', 'seed=23084', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_1.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] +['/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli', 'id=1', 'random', 'seed=3968', 'data', 'file=users-guide/examples/bernoulli.data.json', 'output', 'file=/tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_1.csv', 'method=sample', 'algorithm=hmc', 'adapt', 'engaged=1'] retcodes=[0, 0, 0, 0] per-chain output files (showing chain 1 only): csv_file: -/tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_1.csv +/tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_1.csv console_msgs (if any): -/tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_0-stdout.txt -16:30:38 - cmdstanpy - DEBUG - Chain 1 console: +/tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_0-stdout.txt +15:16:41 - cmdstanpy - DEBUG - Chain 1 console: method = sample (Default) sample num_samples = 1000 (Default) num_warmup = 1000 (Default) -save_warmup = 0 (Default) +save_warmup = false (Default) thin = 1 (Default) adapt -engaged = 1 (Default) +engaged = true (Default) gamma = 0.05 (Default) delta = 0.8 (Default) kappa = 0.75 (Default) @@ -458,7 +458,7 @@

    Logginginit_buffer = 75 (Default) term_buffer = 50 (Default) window = 25 (Default) -save_metric = 0 (Default) +save_metric = false (Default) algorithm = hmc (Default) hmc engine = nuts (Default) @@ -474,14 +474,14 @@

    Loggingfile = users-guide/examples/bernoulli.data.json init = 2 (Default) random -seed = 23084 +seed = 3968 output -file = /tmp/tmpgvv426mx/bernoulli1wek20la/bernoulli-20240326163038_1.csv +file = /tmp/tmpxrifw9p7/bernoulliofh4vxfv/bernoulli-20240603151641_1.csv diagnostic_file = (Default) refresh = 100 (Default) sig_figs = -1 (Default) profile_file = profile.csv (Default) -save_cmdstan_config = 0 (Default) +save_cmdstan_config = false (Default) num_threads = 1 (Default) @@ -513,9 +513,9 @@

    LoggingIteration: 1900 / 2000 [ 95%] (Sampling) Iteration: 2000 / 2000 [100%] (Sampling) -Elapsed Time: 0.004 seconds (Warm-up) +Elapsed Time: 0.005 seconds (Warm-up) 0.013 seconds (Sampling) -0.017 seconds (Total) +0.018 seconds (Total) diff --git a/docs/users-guide/overview.html b/docs/users-guide/overview.html index ccbf4db6..1eff384b 100644 --- a/docs/users-guide/overview.html +++ b/docs/users-guide/overview.html @@ -6,7 +6,7 @@ - Overview — CmdStanPy 1.2.2 documentation + Overview — CmdStanPy 1.2.3 documentation @@ -64,7 +64,7 @@ diff --git a/docs/users-guide/workflow.html b/docs/users-guide/workflow.html index 332cac28..c10831f2 100644 --- a/docs/users-guide/workflow.html +++ b/docs/users-guide/workflow.html @@ -6,7 +6,7 @@ - CmdStanPy Workflow — CmdStanPy 1.2.2 documentation + CmdStanPy Workflow — CmdStanPy 1.2.3 documentation @@ -64,7 +64,7 @@ @@ -466,7 +466,7 @@

    Output dataCmdStanMCMC and CmdStanGQ return the sample contents in tabular form, see draws() and draws_pd(). Similarly, the draws_xr() method returns the sample -contents as an xarray.Dataset which is a mapping from variable names to their respective values.

    +contents as an xarray.Dataset which is a mapping from variable names to their respective values.