-
-
Notifications
You must be signed in to change notification settings - Fork 189
/
Copy pathlub_constrain.hpp
434 lines (408 loc) · 15.5 KB
/
lub_constrain.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#ifndef STAN_MATH_PRIM_CONSTRAINT_LUB_CONSTRAIN_HPP
#define STAN_MATH_PRIM_CONSTRAINT_LUB_CONSTRAIN_HPP
#include <stan/math/prim/constraint/identity_constrain.hpp>
#include <stan/math/prim/constraint/lb_constrain.hpp>
#include <stan/math/prim/constraint/ub_constrain.hpp>
#include <stan/math/prim/fun/Eigen.hpp>
#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/err.hpp>
#include <stan/math/prim/fun/add.hpp>
#include <stan/math/prim/fun/exp.hpp>
#include <stan/math/prim/fun/elt_multiply.hpp>
#include <stan/math/prim/fun/inv_logit.hpp>
#include <stan/math/prim/fun/log.hpp>
#include <stan/math/prim/fun/log1p.hpp>
#include <stan/math/prim/fun/log1p_exp.hpp>
#include <stan/math/prim/fun/multiply.hpp>
#include <stan/math/prim/fun/subtract.hpp>
#include <stan/math/prim/fun/sum.hpp>
#include <cmath>
namespace stan {
namespace math {
/**
* Return the lower and upper-bounded scalar derived by
* transforming the specified free scalar given the specified
* lower and upper bounds.
*
* <p>The transform is the transformed and scaled inverse logit,
*
* <p>\f$f(x) = L + (U - L) \mbox{logit}^{-1}(x)\f$
*
* @tparam T Scalar.
* @tparam L Scalar.
* @tparam U Scalar.
* @param[in] x Free scalar to transform.
* @param[in] lb Lower bound.
* @param[in] ub Upper bound.
* @return Lower- and upper-bounded scalar derived from transforming
* the free scalar.
* @throw std::domain_error if ub <= lb
*/
template <typename T, typename L, typename U,
require_all_stan_scalar_t<T, L, U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(T&& x, L&& lb, U&& ub) {
const bool is_lb_inf = value_of(lb) == NEGATIVE_INFTY;
const bool is_ub_inf = value_of(ub) == INFTY;
if (unlikely(is_ub_inf && is_lb_inf)) {
return identity_constrain(x, lb, ub);
} else if (unlikely(is_ub_inf)) {
return lb_constrain(identity_constrain(x, ub), lb);
} else if (unlikely(is_lb_inf)) {
return ub_constrain(identity_constrain(x, lb), ub);
} else {
check_less("lub_constrain", "lb", value_of(lb), value_of(ub));
return (ub - lb) * inv_logit(x) + lb;
}
}
/**
* Return the lower- and upper-bounded scalar derived by
* transforming the specified free scalar given the specified
* lower and upper bounds and increment the specified log
* density with the log absolute Jacobian determinant.
*
* <p>The transform is as defined in
* <code>lub_constrain(T, double, double)</code>. The log absolute
* Jacobian determinant is given by
*
* <p>\f$\log \left| \frac{d}{dx} \left(
* L + (U-L) \mbox{logit}^{-1}(x) \right)
* \right|\f$
*
* <p>\f$ {} = \log |
* (U-L)
* \, (\mbox{logit}^{-1}(x))
* \, (1 - \mbox{logit}^{-1}(x)) |\f$
*
* <p>\f$ {} = \log (U - L) + \log (\mbox{logit}^{-1}(x))
* + \log (1 - \mbox{logit}^{-1}(x))\f$
*
* @tparam T Scalar.
* @tparam L Scalar.
* @tparam U Scalar.
* @param[in] x Free scalar to transform.
* @param[in] lb Lower bound.
* @param[in] ub Upper bound.
* @param[in,out] lp Log probability scalar reference.
* @return Lower- and upper-bounded scalar derived from transforming
* the free scalar.
* @throw std::domain_error if ub <= lb
*/
template <typename T, typename L, typename U,
require_all_stan_scalar_t<T, L, U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(T&& x, L&& lb, U&& ub, return_type_t<T, L, U>& lp) {
const bool is_lb_inf = value_of(lb) == NEGATIVE_INFTY;
const bool is_ub_inf = value_of(ub) == INFTY;
if (unlikely(is_ub_inf && is_lb_inf)) {
return identity_constrain(x, ub, lb);
} else if (unlikely(is_ub_inf)) {
return lb_constrain(identity_constrain(x, ub), lb, lp);
} else if (unlikely(is_lb_inf)) {
return ub_constrain(identity_constrain(x, lb), ub, lp);
} else {
check_less("lub_constrain", "lb", value_of(lb), value_of(ub));
const auto diff = ub - lb;
lp += add(log(diff), subtract(-abs(x), multiply(2.0, log1p_exp(-abs(x)))));
return diff * inv_logit(x) + lb;
}
}
/**
* Overload for Eigen matrix and scalar bounds.
*/
template <typename T, typename L, typename U, require_eigen_t<T>* = nullptr,
require_all_stan_scalar_t<L, U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub) {
return eval(
x.unaryExpr([ub, lb](auto&& xx) { return lub_constrain(xx, lb, ub); }));
}
/**
* Overload for Eigen matrix and scalar bounds plus lp.
*/
template <typename T, typename L, typename U, require_eigen_t<T>* = nullptr,
require_all_stan_scalar_t<L, U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub,
return_type_t<T, L, U>& lp) {
return eval(x.unaryExpr(
[lb, ub, &lp](auto&& xx) { return lub_constrain(xx, lb, ub, lp); }));
}
/**
* Overload for Eigen matrix with matrix lower bound and scalar upper
* bound.
*/
template <typename T, typename L, typename U,
require_all_eigen_t<T, L>* = nullptr,
require_stan_scalar_t<U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
return eval(x.binaryExpr(
lb, [ub](auto&& x, auto&& lb) { return lub_constrain(x, lb, ub); }));
}
/**
* Overload for Eigen matrix with matrix lower bound and scalar upper
* bound plus lp.
*/
template <typename T, typename L, typename U,
require_all_eigen_t<T, L>* = nullptr,
require_stan_scalar_t<U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub,
return_type_t<T, L, U>& lp) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
return eval(x.binaryExpr(lb, [ub, &lp](auto&& x, auto&& lb) {
return lub_constrain(x, lb, ub, lp);
}));
}
/**
* Overload for Eigen matrix with scalar lower bound and matrix upper
* bound.
*/
template <typename T, typename L, typename U,
require_all_eigen_t<T, U>* = nullptr,
require_stan_scalar_t<L>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub) {
check_matching_dims("lub_constrain", "x", x, "ub", ub);
return eval(x.binaryExpr(
ub, [lb](auto&& x, auto&& ub) { return lub_constrain(x, lb, ub); }));
}
/**
* Overload for Eigen matrix with scalar lower bound and matrix upper
* bound plus lp.
*/
template <typename T, typename L, typename U,
require_all_eigen_t<T, U>* = nullptr,
require_stan_scalar_t<L>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub,
return_type_t<T, L, U>& lp) {
check_matching_dims("lub_constrain", "x", x, "ub", ub);
return eval(x.binaryExpr(ub, [lb, &lp](auto&& x, auto&& ub) {
return lub_constrain(x, lb, ub, lp);
}));
}
/**
* Overload for Eigen matrix and matrix bounds.
*/
template <typename T, typename L, typename U,
require_all_eigen_t<T, L, U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
check_matching_dims("lub_constrain", "x", x, "ub", ub);
auto x_ref = to_ref(x);
auto lb_ref = to_ref(lb);
auto ub_ref = to_ref(ub);
promote_scalar_t<return_type_t<T, L, U>, T> x_ret(x.rows(), x.cols());
for (Eigen::Index j = 0; j < x_ref.cols(); ++j) {
for (Eigen::Index i = 0; i < x_ref.rows(); ++i) {
x_ret.coeffRef(i, j) = lub_constrain(
x_ref.coeff(i, j), lb_ref.coeff(i, j), ub_ref.coeff(i, j));
}
}
return x_ret;
}
/**
* Overload for Eigen matrix and matrix bounds plus lp.
*/
template <typename T, typename L, typename U,
require_all_eigen_t<T, L, U>* = nullptr,
require_not_var_t<return_type_t<T, L, U>>* = nullptr>
inline auto lub_constrain(const T& x, const L& lb, const U& ub,
return_type_t<T, L, U>& lp) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
check_matching_dims("lub_constrain", "x", x, "ub", ub);
auto x_ref = to_ref(x);
auto lb_ref = to_ref(lb);
auto ub_ref = to_ref(ub);
promote_scalar_t<return_type_t<T, L, U>, T> x_ret(x.rows(), x.cols());
for (Eigen::Index j = 0; j < x_ref.cols(); ++j) {
for (Eigen::Index i = 0; i < x_ref.rows(); ++i) {
x_ret.coeffRef(i, j) = lub_constrain(
x_ref.coeff(i, j), lb_ref.coeff(i, j), ub_ref.coeff(i, j), lp);
}
}
return x_ret;
}
/**
* Overload for array of x and non-array lb and ub
*/
template <typename T, typename L, typename U,
require_all_not_std_vector_t<L, U>* = nullptr>
inline auto lub_constrain(const std::vector<T>& x, const L& lb, const U& ub) {
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb, ub))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb, ub);
}
return ret;
}
/**
* Overload for array of x and non-array lb and ub with lp
*/
template <typename T, typename L, typename U,
require_all_not_std_vector_t<L, U>* = nullptr>
inline auto lub_constrain(const std::vector<T>& x, const L& lb, const U& ub,
return_type_t<T, L, U>& lp) {
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb, ub))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb, ub, lp);
}
return ret;
}
/**
* Overload for array of x and ub and non-array lb
*/
template <typename T, typename L, typename U,
require_not_std_vector_t<L>* = nullptr>
inline auto lub_constrain(const std::vector<T>& x, const L& lb,
const std::vector<U>& ub) {
check_matching_dims("lub_constrain", "x", x, "ub", ub);
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb, ub[0]))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb, ub[i]);
}
return ret;
}
/**
* Overload for array of x and ub and non-array lb with lp
*/
template <typename T, typename L, typename U,
require_not_std_vector_t<L>* = nullptr>
inline auto lub_constrain(const std::vector<T>& x, const L& lb,
const std::vector<U>& ub,
return_type_t<T, L, U>& lp) {
check_matching_dims("lub_constrain", "x", x, "ub", ub);
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb, ub[0]))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb, ub[i], lp);
}
return ret;
}
/**
* Overload for array of x and lb and non-array ub
*/
template <typename T, typename L, typename U,
require_not_std_vector_t<U>* = nullptr>
inline auto lub_constrain(const std::vector<T>& x, const std::vector<L>& lb,
const U& ub) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb[0], ub))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb[i], ub);
}
return ret;
}
/**
* Overload for array of x and lb and non-array ub with lp
*/
template <typename T, typename L, typename U,
require_not_std_vector_t<U>* = nullptr>
inline auto lub_constrain(const std::vector<T>& x, const std::vector<L>& lb,
const U& ub, return_type_t<T, L, U>& lp) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb[0], ub))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb[i], ub, lp);
}
return ret;
}
/**
* Overload for array of x, lb, and ub with lp
*/
template <typename T, typename L, typename U>
inline auto lub_constrain(const std::vector<T>& x, const std::vector<L>& lb,
const std::vector<U>& ub) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
check_matching_dims("lub_constrain", "x", x, "ub", ub);
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb[0], ub[0]))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb[i], ub[i]);
}
return ret;
}
/**
* Overload for array of x, lb, and ub
*/
template <typename T, typename L, typename U>
inline auto lub_constrain(const std::vector<T>& x, const std::vector<L>& lb,
const std::vector<U>& ub,
return_type_t<T, L, U>& lp) {
check_matching_dims("lub_constrain", "x", x, "lb", lb);
check_matching_dims("lub_constrain", "x", x, "ub", ub);
std::vector<plain_type_t<decltype(lub_constrain(x[0], lb[0], ub[0]))>> ret(
x.size());
for (size_t i = 0; i < x.size(); ++i) {
ret[i] = lub_constrain(x[i], lb[i], ub[i], lp);
}
return ret;
}
/**
* Return the lower and upper-bounded scalar derived by
* transforming the specified free scalar given the specified
* lower and upper bounds. If the `Jacobian` parameter is `true`, the log
* density accumulator is incremented with the log absolute Jacobian determinant
* of the transform. All of the transforms are specified with their Jacobians
* in the *Stan Reference Manual* chapter Constraint Transforms.
*
* @tparam Jacobian if `true`, increment log density accumulator with log
* absolute Jacobian determinant of constraining transform
* @tparam T A type inheriting from `Eigen::EigenBase`, a `var_value` with inner
* type inheriting from `Eigen::EigenBase`, a standard vector, or a scalar
* @tparam L A type inheriting from `Eigen::EigenBase`, a `var_value` with inner
* type inheriting from `Eigen::EigenBase`, a standard vector, or a scalar
* @tparam U A type inheriting from `Eigen::EigenBase`, a `var_value` with inner
* type inheriting from `Eigen::EigenBase`, a standard vector, or a scalar
* @param[in] x Free scalar to transform
* @param[in] lb Lower bound
* @param[in] ub Upper bound
* @param[in, out] lp log density accumulator
* @return Lower- and upper-bounded scalar derived from transforming the free
* scalar
* @throw std::domain_error if `ub <= lb`
*/
template <bool Jacobian, typename T, typename L, typename U>
inline auto lub_constrain(const T& x, const L& lb, const U& ub,
return_type_t<T, L, U>& lp) {
if (Jacobian) {
return lub_constrain(x, lb, ub, lp);
} else {
return lub_constrain(x, lb, ub);
}
}
/**
* Wrapper for tuple of bounds, simply delegates to the appropriate overload
*/
template <typename T, typename L, typename U>
inline auto lub_constrain(const T& x, const std::tuple<L, U>& bounds) {
return lub_constrain(x, std::get<0>(bounds), std::get<1>(bounds));
}
/**
* Wrapper for tuple of bounds, simply delegates to the appropriate overload
*/
template <typename T, typename L, typename U>
inline auto lub_constrain(const T& x, const std::tuple<L, U>& bounds,
return_type_t<T, L, U>& lp) {
return lub_constrain(x, std::get<0>(bounds), std::get<1>(bounds), lp);
}
/**
* Wrapper for tuple of bounds, simply delegates to the appropriate overload
*/
template <bool Jacobian, typename T, typename L, typename U>
inline auto lub_constrain(const T& x, const std::tuple<L, U>& bounds,
return_type_t<T, L, U>& lp) {
return lub_constrain<Jacobian>(x, std::get<0>(bounds), std::get<1>(bounds),
lp);
}
} // namespace math
} // namespace stan
#endif