-
-
Notifications
You must be signed in to change notification settings - Fork 25
/
summary_funs.R
318 lines (298 loc) · 11.7 KB
/
summary_funs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
.get_sub_summaries <- function(submodels, test_points, refmodel, family,
search_terms = NULL) {
has_group_features <- !is.null(search_terms)
res <- lapply(submodels, function(model) {
solution_terms <- model$solution_terms
if (length(solution_terms) == 0) {
solution_terms <- c("1")
}
sub_fit <- model$sub_fit
weights <- refmodel$wobs[test_points]
mu <- family$mu_fun(sub_fit,
obs = test_points,
offset = refmodel$offset[test_points],
weights = weights
)
y <- refmodel$y[test_points]
y_test <- nlist(y, weights)
summ <- .weighted_summary_means(
y_test, family, model$weights,
matrix(mu, NROW(y), NCOL(mu)), model$dis
)
summ$draws <- mu
return(summ)
})
}
.weighted_summary_means <- function(y_test, family, wsample, mu, dis) {
loglik <- family$ll_fun(
mu, dis, matrix(y_test$y, nrow = NROW(mu)),
y_test$weights
)
if (length(loglik) == 1) {
# one observation, one sample
list(mu = mu, lppd = loglik)
} else if (is.null(dim(loglik))) {
# loglik is a vector, but not sure if it means one observation with many
# samples, or vice versa?
stop("Internal error encountered: loglik is a vector, ",
"but should be a scalar or matrix")
} else {
# mu is a matrix, so apply weighted sum over the samples
list(
mu = c(mu %*% wsample),
lppd = apply(loglik, 1, log_weighted_mean_exp, wsample)
)
}
}
# copied from summary_funs to remove duplicated code
.tabulate_stats <- function(varsel, stats, alpha = 0.05,
nfeat_baseline = NULL) {
##
## Calculates the desired statistics, their standard errors and credible
## bounds with given credible level alpha based on the variable selection
## information. If nfeat_baseline is given, then compute the statistics
## relative to the baseline model with that size (nfeat_baseline = Inf means
## reference model).
stat_tab <- data.frame()
summ_ref <- varsel$summaries$ref
summ_sub <- varsel$summaries$sub
## fetch the mu and lppd for the baseline model
if (is.null(nfeat_baseline)) {
## no baseline model, i.e, compute the statistics on the actual
## (non-relative) scale
mu.bs <- NULL
lppd.bs <- NULL
delta <- FALSE
} else {
if (nfeat_baseline == Inf) {
summ.bs <- summ_ref
} else {
summ.bs <- summ_sub[[nfeat_baseline + 1]]
}
mu.bs <- summ.bs$mu
lppd.bs <- summ.bs$lppd
delta <- TRUE
}
for (s in seq_along(stats)) {
stat <- stats[s]
## reference model statistics
summ <- summ_ref
res <- get_stat(summ$mu, summ$lppd, varsel$d_test, varsel$family, stat,
mu.bs = mu.bs, lppd.bs = lppd.bs, weights = summ$w,
alpha = alpha, draws = summ$draws
)
row <- data.frame(
data = varsel$d_test$type, size = Inf, delta = delta, statistic = stat,
value = res$value, lq = res$lq, uq = res$uq, se = res$se, diff = NA,
diff_se = NA
)
stat_tab <- rbind(stat_tab, row)
## submodel statistics
for (k in seq_along(varsel$summaries$sub)) {
summ <- summ_sub[[k]]
if (delta == FALSE && sum(!is.na(summ_ref$mu)) > sum(!is.na(summ$mu))) {
## special case (subsampling loo): reference model summaries computed
## for more points than for the submodel, so utilize the reference model
## results to get more accurate statistic fot the submodel on the actual
## scale
res_ref <- get_stat(summ_ref$mu, summ_ref$lppd, varsel$d_test,
varsel$family, stat, mu.bs = NULL, lppd.bs = NULL,
weights = summ_ref$w, alpha = alpha,
draws = summ_ref$draws)
res_diff <- get_stat(summ$mu, summ$lppd, varsel$d_test, varsel$family,
stat, mu.bs = summ_ref$mu, lppd.bs = summ_ref$lppd,
weights = summ$w, alpha = alpha,
draws = summ$draws)
val <- res_ref$value + res_diff$value
val.se <- sqrt(res_ref$se^2 + res_diff$se^2)
lq <- qnorm(alpha / 2, mean = val, sd = val.se)
uq <- qnorm(1 - alpha / 2, mean = val, sd = val.se)
row <- data.frame(
data = varsel$d_test$type, size = k - 1, delta = delta,
statistic = stat, value = val, lq = lq, uq = uq, se = val.se,
diff = res_diff$value, diff_se = res_diff$se)
} else {
## normal case
res <- get_stat(summ$mu, summ$lppd, varsel$d_test, varsel$family, stat,
mu.bs = mu.bs, lppd.bs = lppd.bs, weights = summ$w,
alpha = alpha, draws = summ$draws
)
diff <- get_stat(summ$mu, summ$lppd, varsel$d_test, varsel$family, stat,
mu.bs = summ_ref$mu, lppd.bs = summ_ref$lppd,
weights = summ$w, alpha = alpha, draws = summ_ref$draws
)
row <- data.frame(
data = varsel$d_test$type, size = k - 1, delta = delta,
statistic = stat, value = res$value, lq = res$lq, uq = res$uq,
se = res$se, diff = diff$value, diff_se = diff$se)
}
stat_tab <- rbind(stat_tab, row)
}
}
stat_tab
}
get_stat <- function(mu, lppd, d_test, family, stat, mu.bs = NULL,
lppd.bs = NULL, weights = NULL, alpha = 0.1,
seed = 1208499, B = 2000, draws = NULL) {
##
## Calculates given statistic stat with standard error and confidence bounds.
## mu.bs and lppd.bs are the pointwise mu and lppd for another model that is
## used as a baseline for computing the difference in the given statistic,
## for example the relative elpd. If these arguments are not given (NULL) then
## the actual (non-relative) value is computed.
n <- length(mu)
if (stat %in% c("mlpd", "elpd")) {
n_notna <- sum(!is.na(lppd))
} else {
n_notna <- sum(!is.na(mu))
}
if (is.null(weights)) {
## set default weights if not given
weights <- rep(1 / n_notna, n)
}
## ensure the weights sum to n_notna
weights <- n_notna * weights / sum(weights)
if (stat == "r2") {
if (!is.null(mu.bs)) {
y <- mu.bs
} else {
y <- d_test$y
}
eloo <- mu - y
n <- length(y)
rd <- bayesboot::rudirichlet(4000, n)
vary <- (rowSums(sweep(rd, 2, y^2, FUN = "*")) -
rowSums(sweep(rd, 2, y, FUN = "*"))^2) * (n / (n - 1))
vareloo <- (rowSums(sweep(rd, 2, eloo^2, FUN = "*")) -
rowSums(sweep(rd, 2, eloo, FUN = "*")^2)) * (n / (n - 1))
looR2 <- 1 - vareloo / vary
looR2[looR2 < -1] <- -1
looR2[looR2 > 1] <- 1
value <- median(looR2)
value.se <- sd(looR2)
} else if (stat == "crps") {
y <- d_test$y
if (!is.null(draws)) {
mu <- draws
value <- sapply(seq_along(y), function(i) {
scoringRules::crps_sample(y[i], dat = mu[i, ])
})
value.se <- sd(value)
value <- median(value)
} else {
value <- NA
value.se <- NA
}
} else if (stat == "mlpd") {
if (!is.null(lppd.bs)) {
value <- mean((lppd - lppd.bs) * weights, na.rm = TRUE)
value.se <- weighted.sd(lppd - lppd.bs, weights,
na.rm = TRUE) / sqrt(n_notna)
} else {
value <- mean(lppd * weights, na.rm = TRUE)
value.se <- weighted.sd(lppd, weights,
na.rm = TRUE) / sqrt(n_notna)
}
} else if (stat == "elpd") {
if (!is.null(lppd.bs)) {
value <- sum((lppd - lppd.bs) * weights, na.rm = TRUE)
value.se <- weighted.sd(lppd - lppd.bs, weights,
na.rm = TRUE) / sqrt(n_notna) * n_notna
} else {
value <- sum(lppd * weights, na.rm = TRUE)
value.se <- weighted.sd(lppd, weights,
na.rm = TRUE) / sqrt(n_notna) * n_notna
}
} else if (stat == "mse") {
y <- d_test$y
if (!is.null(mu.bs)) {
value <- mean(weights * ((mu - y)^2 - (mu.bs - y)^2), na.rm = TRUE)
value.se <- weighted.sd((mu - y)^2 - (mu.bs - y)^2, weights,
na.rm = TRUE) / sqrt(n_notna)
} else {
value <- mean(weights * (mu - y)^2, na.rm = TRUE)
value.se <- weighted.sd((mu - y)^2, weights, na.rm = TRUE) / sqrt(n_notna)
}
} else if (stat == "rmse") {
y <- d_test$y
if (!is.null(mu.bs)) {
## make sure the relative rmse is computed using only those points for
## which
mu.bs[is.na(mu)] <- NA
mu[is.na(mu.bs)] <- NA # both mu and mu.bs are non-NA
value <- (sqrt(mean(weights * (mu - y)^2, na.rm = TRUE))
- sqrt(mean(weights * (mu.bs - y)^2, na.rm = TRUE)))
value.bootstrap1 <- bootstrap((mu - y)^2, function(resid2)
sqrt(mean(weights * resid2, na.rm = TRUE)), b = B, seed = seed)
value.bootstrap2 <- bootstrap((mu.bs - y)^2, function(resid2)
sqrt(mean(weights * resid2, na.rm = TRUE)), b = B, seed = seed)
value.se <- sd(value.bootstrap1 - value.bootstrap2)
} else {
value <- sqrt(mean(weights * (mu - y)^2, na.rm = TRUE))
value.bootstrap <- bootstrap((mu - y)^2, function(resid2)
sqrt(mean(weights * resid2, na.rm = TRUE)), b = B, seed = seed)
value.se <- sd(value.bootstrap)
}
} else if (stat == "acc" || stat == "pctcorr") {
y <- d_test$y
if (!is.null(mu.bs)) {
value <- mean(weights * ((round(mu) == y) - (round(mu.bs) == y)),
na.rm = TRUE)
value.se <- weighted.sd((round(mu) == y) - (round(mu.bs) == y),
weights, na.rm = TRUE) / sqrt(n_notna)
} else {
value <- mean(weights * (round(mu) == y), na.rm = TRUE)
value.se <- weighted.sd(round(mu) == y, weights,
na.rm = TRUE) / sqrt(n_notna)
}
} else if (stat == "auc") {
y <- d_test$y
auc.data <- cbind(y, mu, weights)
if (!is.null(mu.bs)) {
mu.bs[is.na(mu)] <- NA # compute the relative auc using only those points
mu[is.na(mu.bs)] <- NA # for which both mu and mu.bs are non-NA
auc.data.bs <- cbind(y, mu.bs, weights)
value <- auc(auc.data) - auc(auc.data.bs)
value.bootstrap1 <- bootstrap(auc.data, auc, b = B, seed = seed)
value.bootstrap2 <- bootstrap(auc.data.bs, auc, b = B, seed = seed)
value.se <- sd(value.bootstrap1 - value.bootstrap2, na.rm = TRUE)
} else {
value <- auc(auc.data)
value.bootstrap <- bootstrap(auc.data, auc, b = B, seed = seed)
value.se <- sd(value.bootstrap, na.rm = TRUE)
}
}
lq <- qnorm(alpha / 2, mean = value, sd = value.se)
uq <- qnorm(1 - alpha / 2, mean = value, sd = value.se)
return(list(value = value, se = value.se, lq = lq, uq = uq))
}
.is_util <- function(stat) {
## a simple function to determine whether a given statistic (string) is
## a utility (we want to maximize) or loss (we want to minimize)
## by the time we get here, stat should have already been validated
if (stat %in% c("rmse", "mse")) {
return(FALSE)
} else {
return(TRUE)
}
}
.get_nfeat_baseline <- function(object, baseline, stat) {
## get model size that is used as a baseline in comparisons. baseline is one
## of 'best' or 'ref', stat is the statistic according to which the selection
## is done
if (baseline == "best") {
## find number of features that maximizes the utility (or minimizes the
## loss)
tab <- .tabulate_stats(object, stat)
stats_table <- subset(tab, tab$size != Inf)
## tab <- .tabulate_stats(object)
## stats_table <- subset(tab, tab$delta == FALSE &
## tab$statistic == stat & tab$size != Inf)
optfun <- ifelse(.is_util(stat), which.max, which.min)
nfeat_baseline <- stats_table$size[optfun(stats_table$value)]
} else {
## use reference model
nfeat_baseline <- Inf
}
return(nfeat_baseline)
}