-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats_plotter.py
117 lines (107 loc) · 4.47 KB
/
stats_plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# This is a 'seperate' program that can plot the statistical data generated by a PyLife simulation
import os
import json
from datetime import datetime
import matplotlib.pyplot as plt
from utils import load_log_tracker
def load_data(filename = None):
folder_path = "sim_statistics_data"
# If no filename is given then get the latest file
if not filename:
# Get a list of all files in the folder
files = os.listdir(folder_path)
del files[files.index("placeholder")]
# Extract timestamps from filenames [:-5] removes '.json' from filename
timestamps = [file[:-5].split("_")[2] for file in files]
# Convert timestamps to datetime objects
date_objects = [datetime.strptime(timestamp, "%H-%M-%S %y-%m-%d") for timestamp in timestamps]
# Find the index of the file with the latest timestamp
latest_index = date_objects.index(max(date_objects))
# Get the filename of the latest file
filename = files[latest_index]
return load_log_tracker(filename)
# Options: "real" or "ticks"
def plot(time_format = "real"):
print("Plotting...")
data = load_data()
time_data = []
total_organisms = []
total_current_energy = []
average_current_energy = []
species_labels = []
species_counts_dict = {}
species_counts_list = []
for key in data[0]:
if "total" in key and key != "total_organisms" and key != "total_current_energy" and key != "total_species":
species_labels.append(key)
for entry in data:
if time_format == "real":
time_data.append(entry["time_stamp"])
elif time_format == "ticks":
time_data.append(entry["pygame_tick"])
total_organisms.append(entry["total_organisms"])
total_current_energy.append(entry["total_current_energy"])
average_current_energy.append(entry["average_current_energy"])
for label, value in entry.items():
if label in species_labels: # and label != "total_plankton"
if label not in species_counts_dict:
species_counts_dict[label] = []
species_counts_dict[label].append(value)
for label, values in species_counts_dict.items():
species_counts_list.append(values)
# print("time_data ", time_data)
# print("species", species_labels)
# print("species_counts_list", species_counts_list)
# print("total_organisms ", total_organisms)
# print("total_current_energy ", total_current_energy)
# print("average_current_energy ", average_current_energy)
xlabel = 'Time stamp' if time_data == "real" else 'Sim ticks'
# Plotting total_organisms vs time_stamp
# plt.figure(figsize=(10, 5))
# plt.plot(time_data, total_organisms, )
# plt.title('Total Organisms over Time')
# plt.xlabel(xlabel)
# plt.ylabel('Total Organisms')
# plt.yscale('log')
# plt.xticks(rotation=45)
# plt.tight_layout()
# plt.savefig(f'plot_results/total_organisms_{time_format}.png')
#plt.show()
# Plotting total_current_energy and total_organisms vs time_stamp
plt.figure(figsize=(10, 5))
plt.plot(time_data, total_current_energy, color='orange')
plt.plot(time_data, total_organisms, color = 'green')
plt.legend(["Total energy", "Total organisms"])
plt.title('Total Energy and Total Organisms over Time')
plt.xlabel(xlabel)
plt.ylabel('Total')
plt.yscale('log')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(f'plot_results/total_current_energy_{time_format}.png')
#plt.show()
# Plotting average_current_energy vs time_stamp
plt.figure(figsize=(10, 5))
plt.plot(time_data, average_current_energy, color='green')
plt.title('Average Current Energy over Time')
plt.xlabel(xlabel)
plt.ylabel('Average Current Energy')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(f'plot_results/average_current_energy_{time_format}.png')
#plt.show()
# Plotting organisms counts vs time_stamp
plt.figure(figsize=(10, 5))
for i in range(len(species_counts_list)):
plt.plot(time_data, species_counts_list[i])
plt.legend(species_labels) #species_labels[1:]
plt.title('Species counts over Time')
plt.xlabel(xlabel)
plt.ylabel('Species counts')
plt.yscale('log')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(f'plot_results/species_counts_{time_format}.png')
print("Plotting done.")
plot('real')
plot('ticks')