-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_policy.cpp
226 lines (209 loc) · 9.51 KB
/
test_policy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#include "corpus.h"
#include "corpus_ising.h"
#include "objcokus.h"
#include "tag.h"
#include "feature.h"
#include "model.h"
#include "model_opengm.h"
#include "utils.h"
#include "policy.h"
#include "opengm.h"
#include <boost/format.hpp>
#include <opengm/graphicalmodel/graphicalmodel.hxx>
#include <opengm/graphicalmodel/space/simplediscretespace.hxx>
#include <opengm/functions/potts.hxx>
#include <opengm/operations/adder.hxx>
#include <opengm/inference/messagepassing/messagepassing.hxx>
#include <opengm/graphicalmodel/graphicalmodel_hdf5.hxx>
using namespace std;
using namespace HeteroSampler;
using namespace opengm;
namespace po = boost::program_options;
int main(int argc, char* argv[]) {
for (int i = 0; i < argc; i++) {
cout << argv[i] << " ";
}
cout << endl;
try {
// parse args
po::options_description desc("Allowed options");
desc.add_options()
("help", "produce help message")
// model and data
("type", po::value<string>()->default_value("tagging"), "type of the problem (tagging / ocr / ising / opengm)")
("model", po::value<string>()->default_value("model/gibbs.model"), "file for the pre-trained model")
("unigram_model", po::value<string>(), "file for a unigram model (option, dependency for unigram entropy meta-feature)")
("train", po::value<string>()->default_value("data/eng_ner/train"), "training data")
("test", po::value<string>()->default_value("data/eng_ner/test"), "test data")
// learning
("policy", po::value<string>()->default_value("gibbs"), "the policy used for sampling (gibbs / adaptive)")
("learning", po::value<string>()->default_value("logistic"), "learning strategy (logistic / nn)")
("T", po::value<size_t>()->default_value(4), "number of sweeps by the policy")
("K", po::value<size_t>()->default_value(1), "number of trajectories")
("eta", po::value<double>()->default_value(1), "step-size for policy gradient (adagrad)")
("testCount", po::value<size_t>()->default_value(-1), "how many test data used ? default: all (-1). ")
("trainCount", po::value<size_t>()->default_value(-1), "how many training data used ? default: all (-1). ")
("Q", po::value<size_t>()->default_value(1), "number of passes")
("numThreads", po::value<size_t>()->default_value(1), "number of threads to use")
("inplace", po::value<bool>()->default_value(true), "set inplace = false causes the sampler to represent entire trajectory")
("lets_lazymax", po::value<bool>()->default_value(false), "lazymax is true, the algorithm takes max sample only after each sweep.")
("init", po::value<string>()->default_value("random"), "initialization method: random, iid, unigram.")
("feat", po::value<std::string>()->default_value(""), "list of meta-features to use, separated with space")
// simulated annealing
("temp", po::value<string>()->default_value(""), "the annealing scheme to use (\"scanline\" or \"\")")
("temp_init", po::value<double>()->default_value(1), "initial temperature")
("temp_decay", po::value<double>()->default_value(0.9), "decay of temperature.")
("temp_magnify", po::value<double>()->default_value(0.1), "magnifying factor of init temperature.")
// ouput
("output", po::value<string>()->default_value("result/default"), "output path for this run")
("log", po::value<string>()->default_value("log/latest.txt"), "log file for the model")
// reward
("reward", po::value<int>()->default_value(0), "what is the depth of simulation to compute reward.")
("oracle", po::value<int>()->default_value(0), "what is the depth of simulation to compute reward for oracle.")
("rewardK", po::value<int>()->default_value(5), "the number of trajectories used to approximate the reward")
// other options
("verbose", po::value<bool>()->default_value(false), "whether to output more debug information")
("verbosity", po::value<string>()->default_value(""), "what kind of information to log? ")
("lets_notrain", po::value<bool>()->default_value(false), "do not train the policy")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
if (vm.count("help")) {
cout << desc << "\n";
return 1;
}
// load data
string train = vm["train"].as<string>(), test = vm["test"].as<string>();
ptr<Corpus> corpus, test_corpus;
string type = vm["type"].as<string>();
if (type == "tagging") {
corpus = ptr<CorpusLiteral>(new CorpusLiteral());
test_corpus = ptr<CorpusLiteral>(new CorpusLiteral());
cast<CorpusLiteral>(corpus)->computeWordFeat();
} else if (type == "ocr") {
corpus = std::make_shared<CorpusOCR<16, 8> >();
test_corpus = std::make_shared<CorpusOCR<16, 8> >();
} else if (type == "ising") {
corpus = std::make_shared<CorpusIsing>();
test_corpus = std::make_shared<CorpusIsing>();
} else if (type == "opengm") {
typedef opengm::SimpleDiscreteSpace<size_t, size_t> Space;
typedef opengm::GraphicalModel<double, opengm::Adder,
OPENGM_TYPELIST_2(ExplicitFunction<double> ,
PottsFunction<double>),
Space>
GraphicalModelType;
typedef CorpusOpenGM<GraphicalModelType> CorpusOpenGMType;
corpus = std::make_shared<CorpusOpenGMType>();
test_corpus = std::make_shared<CorpusOpenGMType>();
}
corpus->read(train, false);
corpus->test_count = vm["trainCount"].as<size_t>();
test_corpus->read(test, false);
test_corpus->test_count = vm["testCount"].as<size_t>();
// load pre-trained model
shared_ptr<Model> model, model_unigram;
if (type == "ocr" || type == "ising" || type == "tagging") {
auto loadGibbsModel = [&] (string name) -> ModelPtr {
shared_ptr<Model> model = shared_ptr<ModelCRFGibbs>(new ModelCRFGibbs(corpus, vm));
std::ifstream file;
file.open(name, std::fstream::in);
if (!file.is_open())
throw (name + " not found.").c_str();
file >> *model;
file.close();
// extract features based on application.
if (type == "ocr") {
cast<ModelCRFGibbs>(model)->extractFeatures = extractOCR;
cast<ModelCRFGibbs>(model)->extractFeatAll = extractOCRAll;
} else if (type == "ising") {
cast<ModelCRFGibbs>(model)->extractFeatures = extractIsing;
cast<ModelCRFGibbs>(model)->extractFeatAll = extractIsingAll;
cast<ModelCRFGibbs>(model)->extractFeaturesAtInit = extractIsingAtInit;
cast<ModelCRFGibbs>(model)->getMarkovBlanket = getIsingMarkovBlanket;
cast<ModelCRFGibbs>(model)->getInvMarkovBlanket = getIsingMarkovBlanket;
}
return model;
};
model = loadGibbsModel(vm["model"].as<string>());
if (vm.count("unigram_model")) {
model_unigram = loadGibbsModel(vm["unigram_model"].as<string>());
}
} else if (type == "opengm") {
typedef opengm::SimpleDiscreteSpace<size_t, size_t> Space;
typedef opengm::GraphicalModel<double, opengm::Adder,
OPENGM_TYPELIST_2(ExplicitFunction<double> ,
PottsFunction<double>),
Space> GraphicalModelType;
typedef CorpusOpenGM<GraphicalModelType> CorpusOpenGMType;
model = std::make_shared<ModelEnumerativeGibbs<GraphicalModelType, opengm::Minimizer> >(vm);
}
shared_ptr<Policy> policy;
auto train_func = [&] (shared_ptr<Policy> policy) {
policy->train_policy(corpus);
};
int sysres = 0;
string name = vm["output"].as<string>();
const size_t T = vm["T"].as<size_t>();
removeFile(name);
makeDirs(name + "/");
if (vm["policy"].as<string>() == "gibbs")
{
Policy::ResultPtr result = nullptr;
shared_ptr<GibbsPolicy> gibbs_policy;
gibbs_policy = shared_ptr<GibbsPolicy>(new GibbsPolicy(model, vm));
gibbs_policy->T = 1; // do one sweep after another.
for (size_t t = 1; t <= T; t++) {
string myname = name + "/T" + to_string(t) + ".xml";
gibbs_policy->resetLog(std::make_shared<XMLlog>(myname));
if (t == 1) {
result = gibbs_policy->test(test_corpus);
} else {
gibbs_policy->init_method = "";
gibbs_policy->test(result);
}
}
}
else if (vm["policy"].as<string>() == "adaptive")
{
const int fold = 20;
auto policy = std::make_shared<BlockPolicy>(model, vm);
policy->model_unigram = model_unigram;
// training
makeDirs(name + "/train");
policy->resetLog(shared_ptr<XMLlog>(new XMLlog(name + "_train" + ".xml")));
policy->train(corpus);
int testCount = vm["testCount"].as<size_t>();
int count = test_corpus->count(testCount);
auto result = policy->test(test_corpus, 0);
policy->resetLog(nullptr);
// run with different budgets
double budget = 0;
auto runWithBudget = [&] (double b) {
budget += b;
string myname = name + "/b" + boost::str(boost::format("%.2f") % budget) + ".xml";
policy->resetLog(shared_ptr<XMLlog>(new XMLlog(myname)));
policy->test(result, b);
policy->resetLog(nullptr);
};
runWithBudget(1);
for (int t = 0; t < T; t++) {
if (t == 0) {
const int segs = 10;
for (int i = 0; i < segs; i++) {
runWithBudget(1 / (double)segs);
}
} else {
const int segs = 3;
for (int i = 0; i < segs; i++) {
runWithBudget(1 / (double)segs);
}
}
}
}
} catch (char const* ee) {
cout << "error: " << ee << endl;
}
return 0;
}