-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathpen_ClusterGAN.py
274 lines (208 loc) · 11.1 KB
/
pen_ClusterGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import time
import dateutil.tz
import datetime
import argparse
import importlib
import tensorflow as tf
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics.cluster import normalized_mutual_info_score, adjusted_rand_score
import metric
import util
tf.set_random_seed(0)
class clusGAN(object):
def __init__(self, g_net, d_net, enc_net, x_sampler, z_sampler, data, model, sampler,
num_classes, dim_gen, n_cat, batch_size, beta_cycle_gen, beta_cycle_label):
self.model = model
self.data = data
self.sampler = sampler
self.g_net = g_net
self.d_net = d_net
self.enc_net = enc_net
self.x_sampler = x_sampler
self.z_sampler = z_sampler
self.num_classes = num_classes
self.dim_gen = dim_gen
self.n_cat = n_cat
self.batch_size = batch_size
scale = 10.0
self.beta_cycle_gen = beta_cycle_gen
self.beta_cycle_label = beta_cycle_label
self.x_dim = self.d_net.x_dim
self.z_dim = self.g_net.z_dim
self.x = tf.placeholder(tf.float32, [None, self.x_dim], name='x')
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.z_gen = self.z[:,0:self.dim_gen]
self.z_hot = self.z[:,self.dim_gen:]
self.x_ = self.g_net(self.z)
self.z_enc_gen, self.z_enc_label, self.z_enc_logits = self.enc_net(self.x_, reuse=False)
self.z_infer_gen, self.z_infer_label, self.z_infer_logits = self.enc_net(self.x)
self.d = self.d_net(self.x, reuse=False)
self.d_ = self.d_net(self.x_)
self.g_loss = tf.reduce_mean(self.d_) + \
self.beta_cycle_gen * tf.reduce_mean(tf.square(self.z_gen - self.z_enc_gen)) +\
self.beta_cycle_label * tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=self.z_enc_logits,labels=self.z_hot))
self.d_loss = tf.reduce_mean(self.d) - tf.reduce_mean(self.d_)
epsilon = tf.random_uniform([], 0.0, 1.0)
x_hat = epsilon * self.x + (1 - epsilon) * self.x_
d_hat = self.d_net(x_hat)
ddx = tf.gradients(d_hat, x_hat)[0]
ddx = tf.sqrt(tf.reduce_sum(tf.square(ddx), axis=1))
ddx = tf.reduce_mean(tf.square(ddx - 1.0) * scale)
self.d_loss = self.d_loss + ddx
self.d_adam = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9) \
.minimize(self.d_loss, var_list=self.d_net.vars)
self.g_adam = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9) \
.minimize(self.g_loss, var_list=[self.g_net.vars, self.enc_net.vars])
self.saver = tf.train.Saver()
run_config = tf.ConfigProto()
run_config.gpu_options.per_process_gpu_memory_fraction = 1.0
run_config.gpu_options.allow_growth = True
self.sess = tf.Session(config=run_config)
def train(self, num_batches=500000):
now = datetime.datetime.now(dateutil.tz.tzlocal())
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
batch_size = self.batch_size
self.sess.run(tf.global_variables_initializer())
start_time = time.time()
print(
'Training {} on {}, sampler = {}, z = {} dimension, beta_n = {}, beta_c = {}'.
format(self.model, self.data, self.sampler, self.z_dim, self.beta_cycle_gen, self.beta_cycle_label))
for t in range(0, num_batches):
d_iters = 5
for _ in range(0, d_iters):
bx = self.x_sampler.train(batch_size)
bz = self.z_sampler(batch_size, self.z_dim, self.sampler, self.num_classes, self.n_cat)
self.sess.run(self.d_adam, feed_dict={self.x: bx, self.z: bz})
bz = self.z_sampler(batch_size, self.z_dim, self.sampler, self.num_classes, self.n_cat)
self.sess.run(self.g_adam, feed_dict={self.z: bz})
if (t+1) % 100 == 0:
bx = self.x_sampler.train(batch_size)
bz = self.z_sampler(batch_size, self.z_dim, self.sampler, self.num_classes, self.n_cat)
d_loss = self.sess.run(
self.d_loss, feed_dict={self.x: bx, self.z: bz}
)
g_loss = self.sess.run(
self.g_loss, feed_dict={self.z: bz}
)
print('Iter [%8d] Time [%5.4f] d_loss [%.4f] g_loss [%.4f]' %
(t+1, time.time() - start_time, d_loss, g_loss))
self.recon_enc(timestamp, val=True)
self.save(timestamp)
def save(self, timestamp):
checkpoint_dir = 'checkpoint_dir/{}/{}_{}_{}_z{}_cyc{}_gen{}'.format(self.data, timestamp, self.model, self.sampler,
self.z_dim, self.beta_cycle_label,
self.beta_cycle_gen)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess, os.path.join(checkpoint_dir, 'model.ckpt'))
def load(self, pre_trained = False, timestamp = ''):
if pre_trained == True:
print('Loading Pre-trained Model...')
checkpoint_dir = 'pre_trained_models/{}/{}_{}_z{}_cyc{}_gen{}'.format(self.data, self.model, self.sampler,
self.z_dim, self.beta_cycle_label, self.beta_cycle_gen)
else:
if timestamp == '':
print('Best Timestamp not provided. Abort !')
checkpoint_dir = ''
else:
checkpoint_dir = 'checkpoint_dir/{}/{}_{}_{}_z{}_cyc{}_gen{}'.format(self.data, timestamp, self.model, self.sampler,
self.z_dim, self.beta_cycle_label,
self.beta_cycle_gen)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, 'model.ckpt'))
print('Restored model weights.')
def _gen_samples(self, num_samples):
batch_size = self.batch_size
bz = self.z_sampler(batch_size, self.z_dim, self.sampler, self.num_classes, self.n_cat)
fake_samples = self.sess.run(self.x_, feed_dict = {self.z : bz})
for t in range(num_samples // batch_size):
bz = self.z_sampler(batch_size, self.z_dim, self.sampler, self.num_classes, self.n_cat)
samp = self.sess.run(self.x_, feed_dict = {self.z : bz})
fake_samples = np.vstack((fake_samples, samp))
print(' Generated {} samples .'.format(fake_samples.shape[0]))
np.save('./Image_samples/{}/{}_{}_K_{}_gen_images.npy'.
format(self.data, self.model, self.sampler, self.num_classes), fake_samples)
def recon_enc(self, timestamp, val = True):
if val:
data_recon, label_recon = self.x_sampler.validation()
else:
data_recon, label_recon = self.x_sampler.test()
#data_recon, label_recon = self.x_sampler.load_all()
num_pts_to_plot = data_recon.shape[0]
recon_batch_size = self.batch_size
latent = np.zeros(shape=(num_pts_to_plot, self.z_dim))
print('Data Shape = {}, Labels Shape = {}'.format(data_recon.shape, label_recon.shape))
for b in range(int(np.ceil(num_pts_to_plot*1.0 / recon_batch_size))):
if (b+1)*recon_batch_size > num_pts_to_plot:
pt_indx = np.arange(b*recon_batch_size, num_pts_to_plot)
else:
pt_indx = np.arange(b*recon_batch_size, (b+1)*recon_batch_size)
xtrue = data_recon[pt_indx, :]
zhats_gen, zhats_label = self.sess.run([self.z_infer_gen, self.z_infer_label], feed_dict={self.x : xtrue})
latent[pt_indx, :] = np.concatenate((zhats_gen, zhats_label), axis=1)
if self.beta_cycle_gen == 0:
self._eval_cluster(latent[:, self.dim_gen:], label_recon, timestamp, val)
else:
self._eval_cluster(latent, label_recon, timestamp, val)
def _eval_cluster(self, latent_rep, labels_true, timestamp, val):
km = KMeans(n_clusters=max(self.num_classes, len(np.unique(labels_true))), random_state=0).fit(latent_rep)
labels_pred = km.labels_
purity = metric.compute_purity(labels_pred, labels_true)
ari = adjusted_rand_score(labels_true, labels_pred)
nmi = normalized_mutual_info_score(labels_true, labels_pred)
if val:
data_split = 'Validation'
else:
data_split = 'Test'
#data_split = 'All'
print('Data = {}, Model = {}, sampler = {}, z_dim = {}, beta_label = {}, beta_gen = {} '
.format(self.data, self.model, self.sampler, self.z_dim, self.beta_cycle_label, self.beta_cycle_gen))
print(' #Points = {}, K = {}, Purity = {}, NMI = {}, ARI = {}, '
.format(latent_rep.shape[0], self.num_classes, purity, nmi, ari))
with open('logs/Res_{}_{}.txt'.format(self.data, self.model), 'a+') as f:
f.write('{}, {} : K = {}, z_dim = {}, beta_label = {}, beta_gen = {}, sampler = {}, Purity = {}, NMI = {}, ARI = {}\n'
.format(timestamp, data_split, self.num_classes, self.z_dim, self.beta_cycle_label, self.beta_cycle_gen,
self.sampler, purity, nmi, ari))
f.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser('')
parser.add_argument('--data', type=str, default='pendigit')
parser.add_argument('--model', type=str, default='clus_wgan')
parser.add_argument('--sampler', type=str, default='one_hot')
parser.add_argument('--K', type=int, default=10)
parser.add_argument('--dz', type=int, default=5)
parser.add_argument('--bs', type=int, default=64)
parser.add_argument('--beta_n', type=float, default=10.0)
parser.add_argument('--beta_c', type=float, default=10.0)
parser.add_argument('--timestamp', type=str, default='')
parser.add_argument('--train', type=str, default='False')
args = parser.parse_args()
data = importlib.import_module(args.data)
model = importlib.import_module(args.data + '.' + args.model)
num_classes = args.K
dim_gen = args.dz
n_cat = 1
batch_size = args.bs
beta_cycle_gen = args.beta_n
beta_cycle_label = args.beta_c
timestamp = args.timestamp
z_dim = dim_gen + num_classes * n_cat
d_net = model.Discriminator()
g_net = model.Generator(z_dim=z_dim)
enc_net = model.Encoder(z_dim=z_dim, dim_gen = dim_gen)
xs = data.DataSampler()
zs = util.sample_Z
cl_gan = clusGAN(g_net, d_net, enc_net, xs, zs, args.data, args.model, args.sampler,
num_classes, dim_gen, n_cat, batch_size, beta_cycle_gen, beta_cycle_label)
if args.train == 'True':
cl_gan.train()
else:
print('Attempting to Restore Model ...')
if timestamp == '':
cl_gan.load(pre_trained=True)
timestamp = 'pre-trained'
else:
cl_gan.load(pre_trained=False, timestamp=timestamp)
cl_gan.recon_enc(timestamp, val=False)