-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
277 lines (257 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import logging
import argparse
import os
from simpletransformers.seq2seq import Seq2SeqModel
from data_reader.data_reader import read_data_source_target
def main():
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the source and target files for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type, currently only support seq2seq")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pretrained model or model identifier from huggingface.co/models")
# Other parameters
parser.add_argument("--fp16", action="store_true", help="whether use half-precision training")
parser.add_argument("--do_train", action="store_true", help="Whether run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether run eval on the valid set.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run prediction on the test set.")
parser.add_argument("--init_model_weights", action="store_true", help="Whether to initialize the model weights")
parser.add_argument("--overwrite_output_dir", action="store_true",
help="Whether to overwrite on the existing output dir")
parser.add_argument("--use_multiprocessed_decoding", action="store_true",
help="Whether to use multiprocess when decoding")
parser.add_argument("--save_model_every_epoch", action="store_true",
help="Whether to save model every epoch during training")
parser.add_argument("--predict_during_training", action="store_true",
help="Whether to predict after each checkpoint-saving during training")
parser.add_argument("--evaluate_during_training", action="store_true",
help="Whether to evaluate after each checkpoint-saving during training")
parser.add_argument(
"--output_dir",
default='output_dir/', type=str,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--save_step",
default=0, type=int,
help="Save checkpoint every X updates steps.",
)
parser.add_argument(
"--train_batch_size",
default=16, type=int,
help="Size of each train batch",
)
parser.add_argument(
"--eval_batch_size",
default=16, type=int,
help="Size of each eval/predict batch",
)
parser.add_argument(
"--gradient_accumulation_steps",
default=1, type=int,
help="gradient accumulation steps",
)
parser.add_argument(
"--learning_rate",
default=4e-5, type=float,
help="learning rate",
)
parser.add_argument(
"--num_train_epochs",
default=100, type=int,
help="Number of train epochs",
)
parser.add_argument(
"--max_seq_length",
default=None, type=int,
help="Max input seq length",
)
parser.add_argument(
"--max_length",
default=None, type=int,
help="Max output seq length",
)
parser.add_argument(
"--prediction_dir",
default=None, type=str,
help="The output directory where the predictions results will be written.",
)
parser.add_argument(
"--prediction_suffix",
default=None, type=str,
help=" The supplementary suffix of prediction results name.",
)
parser.add_argument(
"--mask_ratio",
default=0.0, type=float,
help="the proportion of masked words in the source",
)
parser.add_argument(
"--mask_length",
default="span-poisson", type=str,
choices=['subword', 'word', 'span-poisson'],
help="when masking words, the length of mask segments",
)
parser.add_argument(
'--replace_length', default=-1, type=int,
help='when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)'
)
parser.add_argument(
'--poisson_lambda',
default=3.0, type=float,
help='randomly shuffle sentences for this proportion of inputs'
)
parser.add_argument(
'--dataloader_num_workers', default=0, type=int,
help='the number of cpus used in collecting data in dataloader, '
'note that if it is large than cpu number, the program may be stuck'
)
parser.add_argument(
'--evaluation_metric', default='qa', type=str,
help='if pretrain passages, use \'passage\', else use \'qa\''
)
####
parser.add_argument('--iter_step', default=1, type=int,
help='# of steps for iterative generation during prediction')
parser.add_argument('--manual_seed', default=4, type=int,
help='random seed')
parser.add_argument('--prompt_tuning_mode', action="store_true",
help="iterative prompting mode.")
parser.add_argument('--ptencoder_name', default='roberta-base', type=str,
help="name or dir of prompt encoder")
parser.add_argument('--static_prompt_tuning_mode', action="store_true",
help="static prompt tuning mode.")
parser.add_argument('--use_decoder_pt', action="store_true",
help="whether also insert decoder prompts")
parser.add_argument('--num_encoder_prompt_tokens', default=10, type=int,
help='# of prompt tokens prepended to encoder input')
parser.add_argument('--num_decoder_prompt_tokens', default=10, type=int,
help='# of prompt tokens prepended to decoder input')
parser.add_argument("--predict_on_train", action="store_true", help="Whether predict on the train.")
parser.add_argument("--predict_on_eval", action="store_true", help="Whether predict on the validation split.")
parser.add_argument('--train_stopper', action="store_true", help="Whether train the prompt stopper in pt mode.")
parser.add_argument('--auto_stop', action="store_true",
help="Whether use prompt stopper to auto-stop during iterative prediction")
parser.add_argument('--pt_dir', default=None, type=str,
help="directory of prompter, adapter & stopper. Set to model_name_or_path if not provided")
# DDP configs:
parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--dist-url', default='env://', type=str, help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--local_rank', default=-1, type=int, help='local rank for distributed training')
parser.add_argument('--gpu', default=None, type=int)
args = parser.parse_args()
if args.train_stopper or args.auto_stop:
assert args.prompt_tuning_mode
if args.prompt_tuning_mode or args.static_prompt_tuning_mode:
# if in PT mode, the max length needs to be extended to include the prompt tokens
args.max_seq_length = args.max_seq_length + args.num_encoder_prompt_tokens
if args.use_decoder_pt:
args.max_length = args.max_length + args.num_decoder_prompt_tokens
if args.pt_dir is None:
args.pt_dir = args.model_name_or_path
if args.static_prompt_tuning_mode:
assert not args.prompt_tuning_mode
assert not args.train_stopper
assert not args.auto_stop
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
if args.do_train or args.predict_on_train:
train_df = read_data_source_target(args.data_dir + "train.source", args.data_dir + "train.target")
else:
train_df = None
if args.do_eval or args.evaluate_during_training or args.predict_on_eval:
eval_df = read_data_source_target(args.data_dir + "valid.source", args.data_dir + "valid.target")
else:
eval_df = None
if args.do_predict or args.predict_during_training:
test_df = read_data_source_target(args.data_dir + "test.source", args.data_dir + "test.target")
else:
test_df = None
model_args = {
"reprocess_input_data": True,
"overwrite_output_dir": args.overwrite_output_dir,
"init_model_weights": args.init_model_weights,
"max_seq_length": args.max_seq_length,
"train_batch_size": args.train_batch_size,
"eval_batch_size": args.eval_batch_size,
"gradient_accumulation_steps": args.gradient_accumulation_steps,
"learning_rate": args.learning_rate,
"num_train_epochs": args.num_train_epochs,
"save_eval_checkpoints": False,
"save_model_every_epoch": args.save_model_every_epoch,
"save_steps": args.save_step,
"evaluate_during_training": args.evaluate_during_training,
"evaluate_generated_text": True,
"evaluate_during_training_verbose": True,
"predict_during_training": args.predict_during_training,
"use_multiprocessing": False,
"output_dir": args.output_dir,
"max_length": args.max_length,
"manual_seed": args.manual_seed,
"mask_ratio": args.mask_ratio,
"mask_length": args.mask_length,
"replace_length": args.replace_length,
"poisson_lambda": args.poisson_lambda,
"fp16": args.fp16,
"truncation": True,
"dataloader_num_workers":args.dataloader_num_workers,
"use_multiprocessed_decoding":args.use_multiprocessed_decoding,
"evaluation_metric": args.evaluation_metric,
}
# Initialize model
if args.model_type == 'seq2seq':
model = Seq2SeqModel(
encoder_decoder_type="bart",
encoder_decoder_name=args.model_name_or_path,
args=model_args,
prompt_tuning_mode=args.prompt_tuning_mode,
ptencoder_name=args.ptencoder_name,
static_prompt_tuning_mode=args.static_prompt_tuning_mode,
use_decoder_pt=args.use_decoder_pt,
num_encoder_prompt_tokens=args.num_encoder_prompt_tokens,
num_decoder_prompt_tokens=args.num_decoder_prompt_tokens,
pt_dir=args.pt_dir,
local_rank=args.local_rank,
rank=args.rank,
gpu=args.gpu,
world_size=args.world_size,
dist_url=args.dist_url,
dist_backend=args.dist_backend,
)
else:
raise ValueError(
"The {} model is not supported now".format(args.model_type)
)
if args.do_train:
model.train_model(train_data=train_df, eval_data=eval_df, test_data=test_df, output_dir=args.output_dir,
train_stopper=args.train_stopper)
pred_suffix = args.prediction_suffix
if pred_suffix is None:
pred_suffix = ""
if args.do_predict:
model.predict(pred_data=test_df, output_dir=args.prediction_dir, suffix="test"+pred_suffix,
iter_step=args.iter_step, auto_stop=args.auto_stop)
if args.predict_on_train:
model.predict(pred_data=train_df, output_dir=args.prediction_dir, suffix="train"+pred_suffix,
iter_step=args.iter_step, auto_stop=args.auto_stop)
if args.predict_on_eval:
model.predict(pred_data=eval_df, output_dir=args.prediction_dir, suffix="valid"+pred_suffix,
iter_step=args.iter_step, auto_stop=args.auto_stop)
if __name__ == '__main__':
main()