forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpt_defs.oss.bzl
810 lines (739 loc) · 31 KB
/
pt_defs.oss.bzl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
load("@bazel_skylib//lib:paths.bzl", "paths")
load("//tools/build_defs:fb_xplat_genrule.bzl", "fb_xplat_genrule")
load("//tools/build_defs:type_defs.bzl", "is_list", "is_string")
load(":build_variables.bzl", "aten_native_source_list")
load(
":ufunc_defs.bzl",
"aten_ufunc_generated_cpu_kernel_sources",
"aten_ufunc_generated_cpu_sources",
"aten_ufunc_generated_cuda_sources",
)
USED_PT_BACKENDS = [
"CPU",
"QuantizedCPU",
"SparseCPU", # brings ~20 kb size regression
]
# This needs to be kept in sync with https://github.com/pytorch/pytorch/blob/release/1.9/torchgen/gen.py#L892
PT_BACKEND_HEADERS = [
"CPU",
"CUDA",
"CompositeExplicitAutograd",
"CompositeExplicitAutogradNonFunctional",
"CompositeImplicitAutograd",
"Meta",
]
PT_BASE_OPS = [
"aten::_coalesced_",
"aten::_copy_from",
"aten::_empty_affine_quantized",
"aten::_empty_per_channel_affine_quantized",
"aten::_indices",
"aten::_nnz",
"aten::_values",
"aten::add",
"aten::add_",
"aten::arange",
"aten::as_strided",
"aten::as_strided_",
"aten::cat",
"aten::clone",
"aten::coalesce",
"aten::contiguous",
"aten::copy_",
"aten::copy_sparse_to_sparse_",
"aten::dense_dim",
"aten::dequantize",
"aten::div",
"aten::div_",
"aten::empty",
"aten::empty_like",
"aten::empty_strided",
"aten::empty.memory_format",
"aten::eq",
"aten::equal",
"aten::expand",
"aten::fill_",
"aten::is_coalesced",
"aten::is_complex",
"aten::is_floating_point",
"aten::is_leaf",
"aten::is_nonzero",
"aten::item",
"aten::max",
"aten::min",
"aten::mul",
"aten::mul_",
"aten::narrow",
"aten::ne",
"aten::permute",
"aten::q_per_channel_axis",
"aten::q_per_channel_scales",
"aten::q_per_channel_zero_points",
"aten::q_scale",
"aten::q_zero_point",
"aten::qscheme",
"aten::quantize_per_tensor",
"aten::reshape",
"aten::_reshape_alias",
"aten::resize_",
"aten::resize_as_",
"aten::scalar_tensor",
"aten::select",
"aten::set_",
"aten::size",
"aten::slice",
"aten::sparse_dim",
"aten::sparse_resize_and_clear_",
"aten::squeeze",
"aten::squeeze_",
"aten::stride",
"aten::sub",
"aten::sub_",
"aten::sum",
"aten::t",
"aten::to",
"aten::_to_copy",
"aten::unsqueeze",
"aten::view",
"aten::zero_",
"aten::zeros",
"aten::zeros_like",
]
def get_aten_compiler_flags():
return ATEN_COMPILER_FLAGS
def get_generate_code_bin_outs():
return {
"autograd/generated/ADInplaceOrViewTypeEverything.cpp": ["autograd/generated/ADInplaceOrViewTypeEverything.cpp"],
"autograd/generated/ADInplaceOrViewType_0.cpp": ["autograd/generated/ADInplaceOrViewType_0.cpp"],
"autograd/generated/ADInplaceOrViewType_1.cpp": ["autograd/generated/ADInplaceOrViewType_1.cpp"],
"autograd/generated/Functions.cpp": ["autograd/generated/Functions.cpp"],
"autograd/generated/Functions.h": ["autograd/generated/Functions.h"],
"autograd/generated/TraceTypeEverything.cpp": ["autograd/generated/TraceTypeEverything.cpp"],
"autograd/generated/TraceType_0.cpp": ["autograd/generated/TraceType_0.cpp"],
"autograd/generated/TraceType_1.cpp": ["autograd/generated/TraceType_1.cpp"],
"autograd/generated/TraceType_2.cpp": ["autograd/generated/TraceType_2.cpp"],
"autograd/generated/TraceType_3.cpp": ["autograd/generated/TraceType_3.cpp"],
"autograd/generated/TraceType_4.cpp": ["autograd/generated/TraceType_4.cpp"],
"autograd/generated/VariableType.h": ["autograd/generated/VariableType.h"],
"autograd/generated/VariableTypeEverything.cpp": ["autograd/generated/VariableTypeEverything.cpp"],
"autograd/generated/VariableType_0.cpp": ["autograd/generated/VariableType_0.cpp"],
"autograd/generated/VariableType_1.cpp": ["autograd/generated/VariableType_1.cpp"],
"autograd/generated/VariableType_2.cpp": ["autograd/generated/VariableType_2.cpp"],
"autograd/generated/VariableType_3.cpp": ["autograd/generated/VariableType_3.cpp"],
"autograd/generated/VariableType_4.cpp": ["autograd/generated/VariableType_4.cpp"],
"autograd/generated/variable_factories.h": ["autograd/generated/variable_factories.h"],
}
ATEN_COMPILER_FLAGS = [
"-fexceptions",
"-frtti",
"-fPIC",
"-Os",
"-Wno-absolute-value",
"-Wno-deprecated-declarations",
"-Wno-macro-redefined",
"-Wno-tautological-constant-out-of-range-compare",
"-Wno-unknown-pragmas",
"-Wno-unknown-warning-option",
"-Wno-unused-function",
"-Wno-unused-variable",
"-Wno-pass-failed",
"-Wno-shadow",
]
PT_COMPILER_FLAGS = [
"-frtti",
"-Os",
"-Wno-unknown-pragmas",
"-Wno-write-strings",
"-Wno-unused-variable",
"-Wno-unused-function",
"-Wno-deprecated-declarations",
"-Wno-shadow",
"-Wno-global-constructors",
"-Wno-missing-prototypes",
"-std=gnu++17", # to accommodate Eigen
]
def get_template_source_dict():
ret = {}
for file_path in TEMPLATE_SOURCE_LIST:
path_prefix = paths.dirname(file_path)
if path_prefix not in ret:
ret[path_prefix] = []
ret[path_prefix].append(file_path)
return ret
def get_gen_oplist_outs():
return {
#"SupportedMobileModelsRegistration.cpp": [
# "SupportedMobileModelsRegistration.cpp",
#],
"selected_mobile_ops.h": [
"selected_mobile_ops.h",
],
"selected_operators.yaml": [
"selected_operators.yaml",
],
}
def get_pt_compiler_flags():
return PT_COMPILER_FLAGS
def get_aten_preprocessor_flags():
# read_config is not allowed outside of function in Starlark
ATEN_PREPROCESSOR_FLAGS = [
"-DC10_MOBILE",
"-DCPU_CAPABILITY_DEFAULT",
"-DCPU_CAPABILITY=DEFAULT",
"-DCAFFE2_USE_LITE_PROTO",
"-DATEN_CUDNN_ENABLED_FBXPLAT=0",
"-DATEN_MKLDNN_ENABLED_FBXPLAT=0",
"-DATEN_NNPACK_ENABLED_FBXPLAT=0",
"-DATEN_MKL_ENABLED_FBXPLAT=0",
"-DATEN_MKL_SEQUENTIAL_FBXPLAT=0",
"-DUSE_PYTORCH_METAL",
"-DUSE_PYTORCH_QNNPACK",
"-DUSE_XNNPACK",
"-DNO_EXPORT",
"-DPYTORCH_QNNPACK_RUNTIME_QUANTIZATION",
"-DAT_PARALLEL_OPENMP_FBXPLAT=0",
"-DAT_PARALLEL_NATIVE_FBXPLAT=1",
"-DAT_PARALLEL_NATIVE_TBB_FBXPLAT=0",
"-DUSE_LAPACK_FBXPLAT=0",
"-DAT_BLAS_F2C_FBXPLAT=0",
"-DAT_BLAS_USE_CBLAS_DOT_FBXPLAT=0",
"-DUSE_RUY_QMATMUL", # need third_party:ruy
]
# if get_disable_per_op_profiling():
ATEN_PREPROCESSOR_FLAGS.append("-DPYTORCH_DISABLE_PER_OP_PROFILING")
return ATEN_PREPROCESSOR_FLAGS
TEMPLATE_SOURCE_LIST = [
"torch/csrc/jit/runtime/register_prim_ops.cpp",
"torch/csrc/jit/runtime/register_special_ops.cpp",
] + aten_native_source_list
# For selective build, we can lump the CPU and CPU kernel sources altogether
# because there is only ever one vectorization variant that is compiled
def aten_ufunc_generated_all_cpu_sources(gencode_pattern = "{}"):
return (
aten_ufunc_generated_cpu_sources(gencode_pattern) +
aten_ufunc_generated_cpu_kernel_sources(gencode_pattern)
)
def get_template_registration_files_outs():
outs = {}
for file_path in TEMPLATE_SOURCE_LIST:
outs[file_path] = [file_path]
for base_name in aten_ufunc_generated_all_cpu_sources():
file_path = "aten/src/ATen/{}".format(base_name)
outs[file_path] = [file_path]
return outs
def get_pt_preprocessor_flags():
# read_config is not allowed outside of function in Starlark
PT_PREPROCESSOR_FLAGS = [
"-D_THP_CORE",
"-DC10_MOBILE",
"-DUSE_SCALARS",
"-DNO_CUDNN_DESTROY_HANDLE",
"-DNO_EXPORT",
"-DBUILD_CAFFE2",
]
return PT_PREPROCESSOR_FLAGS
def is_arvr_mode():
return False
def get_build_from_deps_query():
build_from_query = native.read_config("pt", "build_from_deps_query", "1")
return bool(int(build_from_query))
def get_enable_lightweight_dispatch():
enable_lightweight_dispatch = native.read_config("pt", "enable_lightweight_dispatch", "0")
return bool(int(enable_lightweight_dispatch))
def get_static_dispatch_backend():
static_dispatch_backend = native.read_config("pt", "static_dispatch_backend", None)
if static_dispatch_backend == None:
return []
return static_dispatch_backend.split(";")
def get_aten_codegen_extra_params(backends):
if get_build_from_deps_query():
extra_params = {
"force_schema_registration": True,
}
static_backends = get_static_dispatch_backend()
if static_backends:
extra_params["static_dispatch_backend"] = static_backends
extra_params["enabled_backends"] = static_backends
else:
extra_params["enabled_backends"] = backends
return extra_params
else:
return {}
def gen_aten_files(
name,
extra_flags = {},
visibility = [],
compatible_with = []):
extra_params = []
force_schema_registration = extra_flags.get("force_schema_registration", False)
op_registration_allowlist = extra_flags.get("op_registration_allowlist", None)
op_selection_yaml_path = extra_flags.get("op_selection_yaml_path", None)
enabled_backends = extra_flags.get("enabled_backends", None)
static_dispatch_backend = extra_flags.get("static_dispatch_backend", None)
if force_schema_registration:
extra_params.append("--force_schema_registration")
if op_registration_allowlist != None and is_string(op_registration_allowlist):
extra_params.append("--op_registration_whitelist")
extra_params.append(op_registration_allowlist)
if op_selection_yaml_path != None and is_string(op_selection_yaml_path):
extra_params.append("--op_selection_yaml_path")
extra_params.append(op_selection_yaml_path)
if enabled_backends != None and is_list(enabled_backends):
extra_params.append("--backend_whitelist")
extra_params.extend(enabled_backends)
if get_enable_lightweight_dispatch():
extra_params.append("--skip_dispatcher_op_registration")
if static_dispatch_backend:
extra_params.append("--static_dispatch_backend")
extra_params.extend(static_dispatch_backend)
backends = static_dispatch_backend
else:
backends = enabled_backends
fb_xplat_genrule(
name = name,
default_outs = ["."],
outs = get_aten_generated_files(backends),
cmd = "$(exe //torchgen:gen) " + " ".join([
"--source-path $(location //:aten_src_path)/aten/src/ATen",
"--install_dir $OUT",
] + extra_params),
visibility = visibility,
compatible_with = compatible_with,
)
def get_aten_generated_files(enabled_backends):
# NB: RegisterMeta counts as an optionally enabled backend,
# and is intentionally omitted from here
src_files = [
"RegisterBackendSelect.cpp",
"RegisterCompositeImplicitAutograd.cpp",
"RegisterCompositeExplicitAutograd.cpp",
"RegisterCompositeExplicitAutogradNonFunctional.cpp",
"CompositeViewCopyKernels.cpp",
"RegisterSchema.cpp",
"Declarations.yaml",
"Functions.cpp",
"Functions.h",
"RedispatchFunctions.h",
"NativeFunctions.h",
"NativeMetaFunctions.h",
"MethodOperators.h",
"FunctionalInverses.h",
"Operators.h",
"Operators_0.cpp",
"Operators_1.cpp",
"Operators_2.cpp",
"Operators_3.cpp",
"Operators_4.cpp",
"CompositeImplicitAutogradFunctions.h",
"CompositeImplicitAutogradFunctions_inl.h",
"CompositeExplicitAutogradFunctions.h",
"CompositeExplicitAutogradFunctions_inl.h",
"CompositeExplicitAutogradNonFunctionalFunctions.h",
"CompositeExplicitAutogradNonFunctionalFunctions_inl.h",
"core/ATenOpList.cpp",
"core/TensorBody.h",
"core/TensorMethods.cpp",
"core/aten_interned_strings.h",
"core/enum_tag.h",
] + get_aten_derived_type_srcs(enabled_backends)
# This is tiresome. A better strategy would be to unconditionally
# generate these files, and then only actually COMPILE them depended
# on the generated set. C'est la vie...
if "CPU" in enabled_backends:
src_files.extend(aten_ufunc_generated_cpu_sources())
src_files.extend(aten_ufunc_generated_cpu_kernel_sources())
if "CUDA" in enabled_backends:
# Cannot unconditionally include this, because in the Edge selective
# build CUDA is not enabled and thus the ufunc codegen for CUDA gets
# skipped
src_files.extend(aten_ufunc_generated_cuda_sources())
res = {}
for file_name in src_files:
res[file_name] = [file_name]
return res
def get_template_registration_file_rules(rule_name):
rules = []
for file_path in TEMPLATE_SOURCE_LIST:
rules.append(":{}[{}]".format(rule_name, file_path))
for file_path in aten_ufunc_generated_all_cpu_sources():
rules.append(":{}[aten/src/ATen/{}]".format(rule_name, file_path))
return rules
# Originally, there were two sets of codes in caffe2:aten_cpu, native codes and non-native.
# Now we have only non-naitve sources in aten_cpu. However, there are some aten related
# tests that may require both native and non-native codes. This rule is used to generate
# both aten_cpu and aten_native_cpu. They are using the same compilation setups.
def build_aten_cpu(name, srcs, deps = []):
cxx_library(
name = name,
srcs = srcs,
header_namespace = "",
compiler_flags = get_pt_compiler_flags(),
exported_preprocessor_flags = get_aten_preprocessor_flags(),
link_whole = True,
linker_flags = ["-Wl,--no-as-needed", "-ldl"],
visibility = ["PUBLIC"],
deps = [
"//third_party:cpuinfo",
"//third_party:glog",
"//third_party:XNNPACK",
#"//third_party/linker_lib:omp",
],
exported_deps = [
"//third_party:fmt",
"//aten/src/ATen/native/quantized/cpu/qnnpack:pytorch_qnnpack",
"//c10:c10",
":aten_header",
":caffe2_headers",
":common_core",
":generated_aten_config_header",
":generated_aten_headers_cpu",
":jit_core_headers",
":pthreadpool",
"//third_party:ruy_lib",
],
)
######### selective build #########
def get_pt_ops_deps(name, deps, train = False, enforce_traced_op_list = False, enable_flatbuffer = False, **kwargs):
if not get_build_from_deps_query():
return deps
pt_operator_registry(
name,
deps,
train = train,
enforce_traced_op_list = enforce_traced_op_list,
enable_flatbuffer = enable_flatbuffer,
**kwargs
)
return deps + [":" + name]
# pt_operator_registry is the method that defines the fb_xplat_cxx_library that contains
# code for all selected PyTorch Operators and kernel functions. This also includes
# operator registration into the dispatcher.
#
# template_select: bool: Indicates if template based selective build is enabled.
#
# enforce_traced_op_list: bool: Enforces that only new-style operator
# lists based on the all_mobile_model_configs.yaml file and tracing based selective
# build are used in this library.
#
# train: bool: Build this library for training (True) or inference only (False).
# If built for training, codegen for VariableType is also included.
#
# pt_allow_forced_schema_registration: Manually disables forced schema registration when set to false, Default is true.
# Only does anything when train=True and the app requires full jit then force_schema_registration needs to occur.
# As Federated Learning migrates to lite interpreter
# we can slowly turn off forced schema registration as it is useless space and floods the compatibility api
#
def pt_operator_registry(
name,
deps = [],
train = False,
labels = [],
env = [],
template_select = True,
enforce_traced_op_list = False,
pt_allow_forced_schema_registration = True,
enable_flatbuffer = False,
**kwargs):
compatible_with = kwargs.get("compatible_with", [])
code_gen_files = pt_operator_query_codegen(name, deps = deps, train = train, enforce_traced_op_list = enforce_traced_op_list, pt_allow_forced_schema_registration = pt_allow_forced_schema_registration, compatible_with = compatible_with)
code_gen_srcs = code_gen_files["srcs"]
lib_deps = [
":aten_cpu",
":torch_mobile_core",
"//c10:c10",
"//third_party:glog",
]
#if train:
# lib_deps = lib_deps + ["fbsource//xplat/caffe2:torch_mobile_train"]
exported_preprocessor_flags = get_aten_preprocessor_flags()
exported_preprocessor_flags += kwargs.pop("exported_preprocessor_flags", [])
if template_select:
# In addition to the
# original code-gen select, this option further filter more operators based on
# compile-time calculation. Examples include prim ops and any other ops that were
# not filtered out before. The purpose of this option is to reduce the production
# size further. However, it may have less flexibility, especially for tests from
# python, where the used operator list is not explicitly generated. If the tests
# are for functionality but not for size, and it's difficult to maintain an explicit
# operator list, it's suggested to turn this option off.
exported_preprocessor_flags.append("-DTEMPLATE_SELECTIVE_BUILD")
kwargs.pop("exported_headers", [])
cxx_library(
name = name,
srcs = code_gen_srcs,
linker_flags = [
"-Wl,--no-as-needed",
"-ldl",
],
link_whole = True,
soname = "libtorch-code-gen.$(ext)",
compiler_flags = get_aten_compiler_flags(),
platform_compiler_flags = get_cpukernel_avx2_flags(),
platform_deps = get_cpukernel_avx2_deps(),
header_namespace = "ATen",
exported_headers = code_gen_files["headers"],
exported_preprocessor_flags = exported_preprocessor_flags,
headers = kwargs.pop("headers", []),
deps = lib_deps + [
"//third_party:XNNPACK",
],
**kwargs
)
def get_aten_derived_type_src_rules(aten_rule_name, enabled_backends):
return [
":{}[{}]".format(aten_rule_name, "Register" + backend + ".cpp")
for backend in enabled_backends
]
def get_aten_selective_cpp_rules(aten_rule_name, enabled_backends):
return [
":{}[{}]".format(aten_rule_name, f)
for f in ["RegisterCompositeImplicitAutograd.cpp", "RegisterCompositeExplicitAutograd.cpp", "RegisterCompositeExplicitAutogradNonFunctional.cpp", "RegisterSchema.cpp", "RegisterBackendSelect.cpp", "CompositeViewCopyKernels.cpp"]
] + get_aten_derived_type_src_rules(aten_rule_name, enabled_backends)
def get_aten_derived_type_srcs(enabled_backends):
return [
"Register" + derived_type + ".cpp"
for derived_type in enabled_backends
] + [
derived_type + "Functions.h"
for derived_type in enabled_backends
if derived_type in PT_BACKEND_HEADERS or derived_type in get_static_dispatch_backend()
] + [
derived_type + "Functions_inl.h"
for derived_type in enabled_backends
if derived_type in PT_BACKEND_HEADERS or derived_type in get_static_dispatch_backend()
]
def pt_operator_query_codegen(name, deps = [], train = False, enforce_traced_op_list = False, pt_allow_forced_schema_registration = True, compatible_with = []):
oplist_dir_name = name + "_pt_oplist"
# @lint-ignore BUCKLINT
fb_xplat_genrule(
name = oplist_dir_name,
cmd = ("$(exe //:gen_oplist) " +
"--model_file_list_path $(@query_outputs 'attrfilter(labels, pt_operator_library, deps(set({deps})))') " +
("" if enforce_traced_op_list else "--allow_include_all_overloads ") +
"--output_dir $OUT ").format(deps = " ".join(["\"{}\"".format(d) for d in deps])),
outs = get_gen_oplist_outs(),
default_outs = ["."],
compatible_with = compatible_with,
)
# Aten files
aten_genrule = name + "_aten"
extra_flags = {
"enabled_backends": USED_PT_BACKENDS,
"op_selection_yaml_path": "$(location :{}[selected_operators.yaml])".format(oplist_dir_name),
}
if train and pt_allow_forced_schema_registration:
extra_flags["force_schema_registration"] = True
# if get_enable_lightweight_dispatch():
# unboxing_genrule = name + "_unboxing"
# gen_aten_unboxing_files(
# unboxing_genrule,
# extra_flags = extra_flags,
# )
static_dispatch_backend = get_static_dispatch_backend()
if static_dispatch_backend:
extra_flags["static_dispatch_backend"] = static_dispatch_backend
gen_aten_files(
aten_genrule,
extra_flags = extra_flags,
compatible_with = compatible_with,
)
# unboxing_wrappers files
extra_params = [
"--operators_yaml_path",
"$(location :" + oplist_dir_name + "[selected_operators.yaml])",
]
unboxing_and_autograd_genrule = name + "_unboxing_and_autograd"
gen_aten_libtorch_files(unboxing_and_autograd_genrule, extra_params, compatible_with)
# Template runtime files (prim ops, etc)
template_registration_genrule = name + "_template_registration"
copy_template_registration_files(template_registration_genrule)
srcs = get_aten_selective_cpp_rules(
aten_genrule,
static_dispatch_backend if static_dispatch_backend else USED_PT_BACKENDS,
) + get_template_registration_file_rules(
template_registration_genrule,
) + ([
":{}[autograd/generated/VariableType_0.cpp]".format(unboxing_and_autograd_genrule),
":{}[autograd/generated/VariableType_1.cpp]".format(unboxing_and_autograd_genrule),
":{}[autograd/generated/VariableType_2.cpp]".format(unboxing_and_autograd_genrule),
":{}[autograd/generated/VariableType_3.cpp]".format(unboxing_and_autograd_genrule),
":{}[autograd/generated/VariableType_4.cpp]".format(unboxing_and_autograd_genrule),
":{}[autograd/generated/ADInplaceOrViewType_0.cpp]".format(unboxing_and_autograd_genrule),
":{}[autograd/generated/ADInplaceOrViewType_1.cpp]".format(unboxing_and_autograd_genrule),
] if train else []) + ([
#":{}[SupportedMobileModelsRegistration.cpp]".format(oplist_dir_name),
])
headers = {
"selected_mobile_ops.h": ":{}[selected_mobile_ops.h]".format(oplist_dir_name),
}
# if get_enable_lightweight_dispatch():
# srcs.extend([
# ":{}[UnboxingFunctions_0.cpp]".format(unboxing_genrule),
# ":{}[UnboxingFunctions_1.cpp]".format(unboxing_genrule),
# ":{}[UnboxingFunctions_2.cpp]".format(unboxing_genrule),
# ":{}[UnboxingFunctions_3.cpp]".format(unboxing_genrule),
# ":{}[UnboxingFunctions_4.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_0.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_1.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_2.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_3.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_4.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_5.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_6.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_7.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_8.cpp]".format(unboxing_genrule),
# ":{}[RegisterCodegenUnboxedKernels_9.cpp]".format(unboxing_genrule),
# ])
# headers["UnboxingFunctions.h"] = ":{}[UnboxingFunctions.h]".format(unboxing_genrule)
return {"headers": headers, "srcs": srcs}
def gen_aten_libtorch_files(name, extra_params = [], compatible_with = []):
fb_xplat_genrule(
name = name,
outs = get_generate_code_bin_outs(),
default_outs = ["."],
cmd = "mkdir -p tools && " +
"$(exe //tools/setup_helpers:generate_code_bin) " + " ".join(
# Mobile build only needs libtorch - skip python bindings for now, except
# for ovrsource, which needs Python bindings.
(["--subset libtorch"] if not is_arvr_mode() else []) + [
"--native-functions-path $(location :aten_src_path)/aten/src/ATen/native/native_functions.yaml",
"--tags-path $(location :aten_src_path)/aten/src/ATen/native/tags.yaml", # todo D35992309
"--install_dir $OUT",
] + extra_params,
),
cmd_exe = "@powershell -Command New-Item -Path tools -ItemType Directory -Force; " +
"$(exe //tools/setup_helpers:generate_code_bin) " + " ".join(
# Mobile build only needs libtorch - skip python bindings for now, except
# for ovrsource, which needs Python bindings.
(["--subset libtorch"] if not is_arvr_mode() else []) + [
"--native-functions-path $(location :aten_src_path)/aten/src/ATen/native/native_functions.yaml",
"--tags-path $(location :aten_src_path)/aten/src/ATen/native/tags.yaml",
"--install_dir $OUT",
] + extra_params,
),
compatible_with = compatible_with,
)
def copy_template_registration_files(name):
cmd = []
cmd_exe = []
template_source_dict = get_template_source_dict()
# Ideally, we would run one copy command for a single source directory along
# with all its child directories, but it's somewhat hard to know if a directory
# is a child of another just bu looking at the metadata (directory relative
# path) that we currently have since 1 directory could look like a parent of
# another and yet come from a different filegroup() rule.
#
for (path_prefix, file_paths) in template_source_dict.items():
cmd.append("mkdir -p $OUT/{}".format(path_prefix))
cmd_exe.append("md $OUT/{}".format(path_prefix))
# Adding *.cpp is a workaround to prevent cp from thrown an error when it
# encounters a directory (since -r was not specified). If files with an
# extension other than .cpp need to be copied, then the command below
# will not work and will need to be updated.
#
cmd.append("cp -f {0}/{1}/*.cpp $OUT/{1}/".format("$(location :templated_selective_build_srcs)", path_prefix))
cmd_exe.append("robocopy /E {0}/{1} $OUT/{1}".format("$(location :templated_selective_build_srcs)", path_prefix))
cmd.append("mkdir -p $OUT/aten/src/ATen")
cmd_exe.append("md $OUT/aten/src/ATen")
# NB: CUDA is skipped here because this is selective build and CUDA is not
# supported for selective build
for ufunc_file in aten_ufunc_generated_all_cpu_sources("$(location :gen_aten[{}])"):
cmd.append("cp -f " + ufunc_file + " $OUT/aten/src/ATen")
cmd_exe.append("copy " + ufunc_file + " $OUT/aten/src/ATen")
fb_xplat_genrule(
name = name,
cmd = " && ".join(cmd),
cmd_exe = "@powershell -Command " + ("; ".join(cmd_exe)),
outs = get_template_registration_files_outs(),
default_outs = ["."],
)
def pt_operator_library(
name,
ops = [],
exported_deps = [],
check_decl = True,
train = False,
model = None,
include_all_operators = False,
**kwargs):
model_name = name
if get_build_from_deps_query():
ops = [op.strip() for op in ops]
# If ops are specified, then we are in static selective build mode, so we append
# base ops to this list to avoid additional special case logic in subsequent code.
if len(ops) > 0:
ops.extend(PT_BASE_OPS)
visibility = kwargs.pop("visibility", ["PUBLIC"])
fb_xplat_genrule(
name = name,
out = "model_operators.yaml",
cmd = (
"$(exe :gen_operators_yaml) " +
"{optionally_root_ops} " +
"{optionally_training_root_ops} " +
"--rule_name {rule_name} " +
"--output_path \"${{OUT}}\" " +
"--model_name {model_name} " +
"--dep_graph_yaml_path pytorch_op_deps.yaml " +
"--models_yaml_path all_mobile_model_configs.yaml " +
#"{optionally_model_versions} " +
#"{optionally_model_assets} " +
#"{optionally_model_traced_backends} " +
"{optionally_include_all_operators}"
).format(
rule_name = name,
model_name = model_name,
optionally_root_ops = "--root_ops " + (",".join(ops)) if len(ops) > 0 else "",
optionally_training_root_ops = "--training_root_ops " + (",".join(ops)) if len(ops) > 0 and train else "",
#optionally_model_versions = "--model_versions " + (",".join(model_versions)) if model_versions != None else "",
#optionally_model_assets = "--model_assets " + (",".join(model_assets)) if model_assets != None else "",
#optionally_model_traced_backends = "--model_traced_backends " + (",".join(model_traced_backends)) if model_traced_backends != None else "",
optionally_include_all_operators = "--include_all_operators " if include_all_operators else "",
),
labels = ["pt_operator_library"], # for pt_operator_query_codegen query
visibility = visibility,
**kwargs
)
else:
if check_decl:
pass
# ensure_ops_are_declared(ops)
cxx_library(
name = name,
compiler_flags = get_pt_compiler_flags(),
cxx_platform_compiler_flags = get_cpukernel_avx2_flags(),
exported_deps = exported_deps,
**kwargs
)
def compose_platform_setting_list(settings):
"""Settings object:
os/cpu pair: should be valid key, or at most one part can be wildcard.
flags: the values added to the compiler flags
"""
result = []
for setting in settings:
result = result.append([
"^{}-{}$".format(setting["os"], setting["cpu"]),
setting["flags"],
])
return result
def get_cpukernel_avx2_flags():
# flags = compose_platform_setting_list([
# {
# "cpu": "x86_64",
# "flags": ["-DHAVE_AVX2_CPU_DEFINITION"],
# "os": "macosx",
# },
# ]) if build_cpukernel_avx2() else []
return []
def build_cpukernel_avx2():
return not is_arvr_mode()
def get_cpukernel_avx2_deps():
# flags = compose_platform_setting_list([
# {
# "cpu": "x86_64",
# "flags": ["fbsource//xplat/caffe2:cpukernel_avx2"],
# "os": "macosx",
# },
# ]) if build_cpukernel_avx2() else []
return []