-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.cpp
executable file
·833 lines (750 loc) · 26.9 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
// --------------------------------------------------------------
// Implementation in C++ of 3D model synthesis / wave function collapse
// Simple, quite efficient and easily hackable
//
// For detailed usage information see README.md
// - the expected voxel format is '.slab.vox' as exported by MagicaVoxel
// - the output can be directly imported into MagicaVoxel
// (use MagicaVoxel viewer for larger outputs, as MagicaVoxel clamps to 128^3)
// - palette indices are used as tile ids (labels).
// - palette index 255 is empty, 254 is ground.
// - input files are in subdir exemplars/
// - output is produced in subdir results/
// results/synthesized.slab.vox is the synthesized labeling
// results/synthesized_detailed.slab.vox is the output using detailed tiles
//
// For more details on model synthesis:
// - http://graphics.stanford.edu/~pmerrell/
// - https://github.com/mxgmn/WaveFunctionCollapse
//
// The goal is to keep it short, efficient, and (relatively) clear.
// Shamelessly uses globals.
//
// Enjoy!
//
// Limitations:
// - all labels are currently equiprobable (will be updated soon)
//
// Sylvain Lefebvre @sylefeb
// --------------------------------------------------------------
/*
MIT License
https://opensource.org/licenses/MIT
Copyright 2017, Sylvain Lefebvre
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sub-license, and / or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// --------------------------------------------------------------
#include <LibSL/LibSL.h>
#include <iostream>
#include <ctime>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <limits>
#include <cstring>
// --------------------------------------------------------------
using namespace std;
// --------------------------------------------------------------
// volume size to synthesize (sz^3)
const int sz = 16;
// name of the problem (files in subdirectory exemplars/)
string problem = "towers";
// string problem = "simple";
// string problem = "flat";
// string problem = "blog6";
// name of the tilemap (files in subdirectory exemplars/)
string tilemap = "castle";
// string tilemap = ""; // none
// synthesize a periodic structure? (only makes sense if not using borders!)
const bool periodic = false;
// --------------------------------------------------------------
// number of labels in problem
int num_lbls;
// bits to describe axial directions
const uchar axis_x = 1;
const uchar axis_y = 2;
const uchar axis_z = 4;
// for navigating neighbors
const v3i neighs[6] = { v3i(-1, 0, 0), v3i(1, 0, 0), v3i(0, -1, 0), v3i(0, 1, 0), v3i(0, 0, -1), v3i(0, 0, 1) };
const bool side[6] = { true, false, true, false, true, false };
const uchar face[6] = { axis_x, axis_x, axis_y, axis_y, axis_z, axis_z };
const int n_left = 0;
const int n_right = 1;
const int n_top = 2;
const int n_bottom = 3;
const int n_below = 4;
const int n_above = 5;
// constraint bit-field for each label pairs
// (e.g. constraints.at(2,5) = axis_x means label 2 can have 5 on its right)
Array2D<uchar> constraints;
// same as above under a different form allowing for faster checks
// (build from 'constraints' by prepareFastConstraintChecks)
Array< Array<vector<int> > > allowed_by_side;
// information from loaded voxel problem
Array<v3b> palette; // RGB palette
map<uchar, int> pal2id; // palette index to label id
map<int, uchar> id2pal; // label id to palette index
/* -------------------------------------------------------- */
// This prepares the small data structure 'allowed_by_side' from 'constraints'
// to allow for a faster check in 'updateConstraintsAtSite'
void prepareFastConstraintChecks()
{
allowed_by_side.allocate(6);
ForIndex(n, 6) {
allowed_by_side[n].allocate(num_lbls);
ForIndex(l1, num_lbls) {
bool allowed = false;
ForIndex(l2, num_lbls) {
int a = l1; int b = l2;
if (side[n]) { std::swap(a, b); }
bool can_be_side_by_side = (constraints.at(a, b) & face[n]);
if (can_be_side_by_side) {
allowed_by_side[n][l1].push_back(l2);
}
}
}
}
}
// --------------------------------------------------------------
// Returns the opposite neighbor, used in 'updateConstraintsAtSite'
inline int oppositeNeighbor(int n)
{
switch (n)
{
case n_left: return n_right; break;
case n_right: return n_left; break;
case n_top: return n_bottom; break;
case n_bottom: return n_top; break;
case n_below: return n_above; break;
case n_above: return n_below; break;
}
return -1;
}
// --------------------------------------------------------------
// Tiny class to hold a vector of bools representing choices at a site (voxel)
// encoded as a bit field (an unsigned int holds 32 bits for the first 32 labels)
class Presence
{
private:
static const int c_MaxLabelFields = 2; // enough to hold 64 labels, increase if needed
static const int s_PowNumBits = 5; // sizeof(uint) * 8 = 32 = 2^5
static const int s_ModNumBits = (1 << 5) - 1; // 31
uint m_Values[c_MaxLabelFields];
public:
Presence() { }
Presence& operator = (const Presence& p) { memcpy(m_Values, p.m_Values, c_MaxLabelFields * sizeof(uint)); return *this; }
const bool operator[](int n) const { return (m_Values[n >> s_PowNumBits] >> (n & s_ModNumBits)) & 1; }
void set(int n, bool b) {
if (b) { m_Values[n >> s_PowNumBits] |= 1 << (n & s_ModNumBits); }
else { m_Values[n >> s_PowNumBits] &= ~(1 << (n & s_ModNumBits)); }
}
void fill(bool b) { memset(m_Values, b ? 0xFF : 0x00, c_MaxLabelFields * sizeof(uint)); }
};
// --------------------------------------------------------------
// Simple helper functions to manipulate Presence vectors
//
// Note the use of the global 'num_lbls'. Yes, not elegant, but avoids
// storing the size (which remains the same after loading a given problem)
// in the Presence class.
inline bool isFalse(const Presence& a)
{
ForIndex(i, num_lbls) { if (a[i]) return false; }
return true;
}
inline void orEq(Presence& a, const Presence& b)
{
ForIndex(i, num_lbls) { a.set(i, a[i] || b[i]); }
}
inline void andEq(Presence& a, const Presence& b)
{
ForIndex(i, num_lbls) { a.set(i, a[i] && b[i]); }
}
/* -------------------------------------------------------- */
// Updates the set of possible labels at a given site (voxel i,j,k), considering the n-th neighbor.
// Returns whether something changed, and whether all labels disappeared due to over-constraints (failed).
// This is a local update used in the global 'propagateConstraints' function below.
void updateConstraintsAtSite(int i, int j, int k, int n, Array3D<Presence>& _S, bool& _changed, bool& _failed)
{
if (!periodic) {
if ( (i + neighs[n][0] < 0 || i + neighs[n][0] >= (int)_S.xsize())
|| (j + neighs[n][1] < 0 || j + neighs[n][1] >= (int)_S.ysize())
|| (k + neighs[n][2] < 0 || k + neighs[n][2] >= (int)_S.zsize())) {
// out of domain, nothing changes
_changed = false;
_failed = false;
return;
}
}
_changed = false;
const Presence& from_neigh = _S.at<Wrap>(i + neighs[n][0], j + neighs[n][1], k + neighs[n][2]);
ForIndex(l1, num_lbls) {
if (_S.at(i, j, k)[l1]) {
bool allowed = false;
int num = (int)allowed_by_side[n][l1].size();
ForIndex(t, num) {
int l2 = allowed_by_side[n][l1][t];
allowed = allowed || from_neigh[l2];
}
if (!allowed) {
_changed = true;
_S.at(i, j, k).set(l1,false);
}
}
}
// is the selection empty?
if (isFalse(_S.at(i,j,k))) { // yes ...
_failed = true;
} else {
_failed = false;
}
}
/* -------------------------------------------------------- */
// Propagates the constraints: this is the major ingredient of model synthesis.
// Initially all labels are present (possible). When some labels are discarded,
// some choices are no longer possible in the neighbors due to the constraints.
// This function will propagate the change throughout the entire domain.
bool propagateConstraints(int i, int j, int k, Array3D<Presence>& _S)
{
std::queue<v3i> q;
q.push(v3i(i, j, k));
while (!q.empty()) {
v3i cur = q.front();
q.pop();
// update neighbors
ForIndex(n, 6) {
v3i ne = v3i(cur[0] + neighs[n][0], cur[1] + neighs[n][1], cur[2] + neighs[n][2]);
ne[0] = (ne[0] + _S.xsize()) % _S.xsize();
ne[1] = (ne[1] + _S.ysize()) % _S.ysize();
ne[2] = (ne[2] + _S.zsize()) % _S.zsize();
bool changed;
bool failed;
updateConstraintsAtSite(ne[0], ne[1], ne[2], oppositeNeighbor(n), _S, changed, failed);
if (changed) {
q.push(ne); // changed: add to sites to process
}
if (failed) {
return false; // constraints disagree, fail
}
}
}
return true;
}
/* -------------------------------------------------------- */
// Initializes the domain with a 'soup' where all labels are possible.
// If lbl_empty is given, an empty border is initialized all around the domain.
bool init_global_soup(Array3D<Presence>& S,int lbl_empty = -1)
{
// init: global, uniform soup
ForArray3D(S, i, j, k) {
S.at(i, j, k).fill(true);
}
bool ok = true;
if (lbl_empty > -1) {
// border
ForIndex(k, S.zsize()) {
ForIndex(i, S.xsize()) {
S.at(i, 0, k).fill(false);
S.at(i, 0, k).set(lbl_empty,true);
S.at(i, S.ysize() - 1, k).fill(false);
S.at(i, S.ysize() - 1, k).set(lbl_empty,true);
ok &= propagateConstraints(i, 0, k, S);
ok &= propagateConstraints(i, S.ysize() - 1, k, S);
}
ForIndex(j, S.ysize()) {
S.at(0, j, k).fill(false);
S.at(0, j, k).set(lbl_empty,true);
S.at(S.xsize() - 1, j, k).fill(false);
S.at(S.xsize() - 1, j, k).set(lbl_empty,true);
ok &= propagateConstraints(0, j, k, S);
ok &= propagateConstraints(S.xsize() - 1, j, k, S);
}
}
ForIndex(j, S.xsize()) {
ForIndex(i, S.xsize()) {
S.at(i, j, 0).fill(false);
S.at(i, j, 0).set(lbl_empty,true);
S.at(i, j, S.zsize() - 1).fill(false);
S.at(i, j, S.zsize() - 1).set(lbl_empty,true);
ok &= propagateConstraints(i, j, 0, S);
ok &= propagateConstraints(i, j, S.zsize() - 1, S);
}
}
}
return ok; // could fail due to propagation
}
/* -------------------------------------------------------- */
// Initializes the domain with an empty assignment.
// If lbl_ground is given, a ground is created on z == 0
bool init_global_empty(Array3D<Presence>& S, int lbl_empty,int lbl_ground=-1)
{
if (lbl_ground < 0) lbl_ground = lbl_empty;
ForArray3D(S, i, j, k) {
S.at(i, j, k).fill(false);
if (k > 0) {
S.at(i, j, k).set(lbl_empty,true);
} else {
S.at(i, j, k).set(lbl_ground,true);
}
}
return true;
}
/* -------------------------------------------------------- */
// Resets a sub-domain with an empty soup. The border is preserved and
// constraints are propagated inside.
// Returns true on success, false otherwise (i.e. constraints cannot be resolved).
// The domain is changed, even on failure. Caller is responsible for restoring it.
bool reinit_sub(Array3D<Presence>& S, int lbl_empty, AAB<3, int> sub)
{
// init: reset subset, propagate constraints from borders
v3i cri = sub.minCorner();
v3i cra = sub.maxCorner();
ForRange(k, cri[2] + 1, cra[2] - 1) {
ForRange(j, cri[1] + 1, cra[1] - 1) {
ForRange(i, cri[0] + 1, cra[0] - 1) {
S.at(i, j, k).fill(true);
}
}
}
bool ok = true;
ForRange(k, cri[2], cra[2]) {
ForRange(i, cri[0], cra[0]) {
ok &= propagateConstraints(i, cri[1], k, S);
ok &= propagateConstraints(i, cra[1], k, S);
}
ForRange(j, cri[1], cra[1]) {
ok &= propagateConstraints(cri[0], j, k, S);
ok &= propagateConstraints(cra[0], j, k, S);
}
}
ForRange(j, cri[1], cra[1]) {
ForRange(i, cri[0], cra[0]) {
ok &= propagateConstraints(i, j, cri[2], S);
ok &= propagateConstraints(i, j, cra[2], S);
}
}
return ok; // failed due to propagation
}
/* -------------------------------------------------------- */
// Counts the number of non empty labels in a sub domain (ignoring border)
int num_solids_sub(Array3D<Presence>& S, int lbl_empty, AAB<3, int> sub)
{
int num = 0;
v3i cri = sub.minCorner();
v3i cra = sub.maxCorner();
ForRange(k, cri[2] + 1, cra[2] - 1) {
ForRange(j, cri[1] + 1, cra[1] - 1) {
ForRange(i, cri[0] + 1, cra[0] - 1) {
if (!S.at(i, j, k)[lbl_empty]) num++;
}
}
}
return num;
}
/* -------------------------------------------------------- */
// Main synthesis function
// Performs synthesis within the sub domain given as a box, or the full domain
// if no sub domain is specified.
// Returns true on success, false otherwise (i.e. constraints cannot be resolved).
// The domain is changed, even on failure. Caller is responsible for restoring it.
// After a success _num_solids contains the number of synthesized non empty labels.
bool synthesize(
Array3D<Presence>& S,
int lbl_empty, int& _num_solids,
AAB<3, int> sub = AAB<3, int>())
{
// buffer for choices
int choices[1024];
sl_assert(num_lbls < 1024);
// box to operate upon
AAB<3, int> box;
if (!sub.empty()) {
box = sub;
} else {
box.addPoint(v3i(0, 0, 0));
box.addPoint(v3i(S.xsize() - 1, S.ysize() - 1, S.zsize() - 1));
}
// starting
int num_choices = 0;
_num_solids = 0;
// randomize scanline order
int order[] = { 0, 1, 2 };
ForIndex(p, 9) {
int a = rand() % 3;
int b = rand() % 3;
std::swap(order[a],order[b]);
}
v3i starts = box.minCorner();
v3i ends = box.maxCorner();
int sign[] = { 1, 1, 1 };
ForIndex(p, 3) {
sign[p] = 1 - 2 * (rand() & 1);
}
ForIndex(p, 3) {
if (sign[p] < 0) {
std::swap(starts[p], ends[p]);
}
ends[p] += sign[p];
}
// propagate until done or conflict
v3i cur = starts;
bool failed = false;
while (!failed) {
cur[order[0]] += sign[order[0]];
if (cur[order[0]] == ends[order[0]]) {
cur[order[0]] = starts[order[0]];
cur[order[1]] += sign[order[1]];
if (cur[order[1]] == ends[order[1]]) {
cur[order[1]] = starts[order[1]];
cur[order[2]] += sign[order[2]];
if (cur[order[2]] == ends[order[2]]) {
break;
}
}
}
sl_assert(cur[0] > -1 && cur[0] < (int)S.xsize());
sl_assert(cur[1] > -1 && cur[1] < (int)S.ysize());
sl_assert(cur[2] > -1 && cur[2] < (int)S.zsize());
// which choices do we have here?
num_choices = 0;
ForIndex(l, num_lbls) {
if (S.at(cur[0], cur[1], cur[2])[l]) {
choices[num_choices++] = l;
}
}
// failure?
if (num_choices == 0) {
failed = true;
}
// random choice
int r = rand() % num_choices;
int c = choices[r];
S.at(cur[0], cur[1], cur[2]).fill(false);
S.at(cur[0], cur[1], cur[2]).set(c,true);
if (c != lbl_empty) {
_num_solids ++;
}
// propagate this change
bool ok = propagateConstraints(cur[0], cur[1], cur[2], S);
if (!ok) {
failed = true;
}
} // main update loop
if (failed) {
// giving up :-(
return false;
} else {
// done!
return true;
}
}
/* -------------------------------------------------------- */
// Loads a voxel grid (.slab.vox format as exported by MagicaVoxel).
void loadFromVox(const char *fname,Array3D<uchar>& _voxels,Array<v3b>& _palette)
{
FILE *f;
f = fopen(fname, "rb");
sl_assert(f != NULL);
long sx, sy, sz;
fread(&sx, 4, 1, f);
fread(&sy, 4, 1, f);
fread(&sz, 4, 1, f);
_voxels.allocate(sx, sy, sz);
ForIndex(i, sx) { ForIndex(j, sy) { ForIndex(k, sz) {
fread(&_voxels.at(i, j, k), sizeof(uchar), 1, f);
} } }
_palette.allocate(256);
fread(_palette.raw(), sizeof(v3b), 256, f);
fclose(f);
}
/* -------------------------------------------------------- */
// Loads a 3D problem (.slab.vox format as exported by MagicaVoxel).
// Each voxel palette id becomes a label (renumbering is performed).
// When two voxels are neighboring in the exemplar, they are allowed
// to appear together in the output. (What is observed is allowed,
// everything else is forbidden).
// See README.md for more details.
void load3DProblem(const char *fname)
{
// read voxels
Array3D<uchar> grid;
loadFromVox(fname, grid, palette);
// build label set
set<uchar> labels;
ForArray3D(grid, i, j, k) {
uchar lbl = grid.at(i, j, k);
labels.insert(lbl);
}
num_lbls = (int)labels.size();
int id = 0;
for (uchar l : labels) {
pal2id[l] = id;
id2pal[id] = l;
id++;
}
// now construct constraints
constraints.allocate(num_lbls, num_lbls);
constraints.fill(0);
ForArray3D(grid, i, j, k) {
int id = pal2id[grid.at(i,j,k)];
ForIndex(n, 6) {
int lbl = grid.at<Wrap>(i + neighs[n][0], j + neighs[n][1], k + neighs[n][2]);
sl_assert(pal2id.find(lbl) != pal2id.end());
int neigh_id = pal2id[lbl];
if (side[n]) {
constraints.at(id, neigh_id) |= face[n];
} else {
constraints.at(neigh_id, id) |= face[n];
}
}
}
// prepare table for faster constraint checks
prepareFastConstraintChecks();
// ready!
}
/* -------------------------------------------------------- */
// Saves a voxel file (.slab.vox format, can be imported by MagicaVoxel)
void saveAsVox(const char *fname,const Array3D<Presence>& S)
{
FILE *f;
f = fopen(fname, "wb");
sl_assert(f != NULL);
long sx = S.xsize(), sy = S.ysize(), sz = S.zsize();
fwrite(&sx, 4, 1, f);
fwrite(&sy, 4, 1, f);
fwrite(&sz, 4, 1, f);
ForIndex(i, sx) {
ForIndex(j, sy) {
ForRangeReverse(k, sz-1, 0) {
int id = -1;
ForIndex(l, num_lbls) {
if (S.at(i, j, k)[l]) {
id = l;
break;
}
}
sl_assert(id > -1);
uchar pal = id2pal[id];
fwrite(&pal, sizeof(uchar), 1, f);
}
}
}
fwrite(palette.raw(), sizeof(v3b), 256, f);
fclose(f);
}
/* -------------------------------------------------------- */
// Saves a voxel file (.slab.vox format, can be imported by MagicaVoxel)
// This function takes as input a low res and high res tile map. The low res
// voxel grid locates detailed tiles in the high res grid. For instance,
// if palette index 128 appears at (1,2,3) in low res, and the tile size is
// 8x8x8, the detailed tile for palette index 128 is expected to be at
// (8,16,24) in the high res voxel grid.
// It is expected the low res and high res grid sizes correspond exactly
// through the tile size. If the low res grid is WxHxD and the tile size
// is 8x8x8 then the high res grid has to be 8Wx8Hx8D.
void saveAsVoxDetailed(
const char *flow,
const char *fdetailed,
const char *fout,
const Array3D<Presence>& S)
{
uchar solid_color = 246; // from MagicaVoxel default palette
// load high res voxels
Array3D<uchar> highres;
loadFromVox(fdetailed, highres, palette);
// get corresponding low res voxels
Array3D<uchar> lowres;
loadFromVox(flow, lowres, palette);
// find out detailed tiles
map<uchar, v3i > pal2pos;
int tx, ty, tz;
// tile size
tx = highres.xsize() / lowres.xsize();
ty = highres.ysize() / lowres.ysize();
tz = highres.zsize() / lowres.zsize();
std::cerr << "Tile size: " << tx << ',' << ty << ',' << tz << std::endl;
// find out detailed tiles: parse low res, check high res for details
ForIndex(i, lowres.xsize()) { ForIndex(j, lowres.ysize()) { ForIndex(k, lowres.zsize()) {
uchar pal = lowres.at(i, j, k);
if (pal < 255) {
// no detailed tile known?
if (pal2pos.find(pal) == pal2pos.end()) {
// check if details exists in high res voxels
bool has_details = false;
bool is_empty = true;
ForIndex(tk, tz) { ForIndex(tj, ty) { ForIndex(ti, tx) {
uchar v = highres.at(i * tx + tx - 1 - ti, j * ty + ty - 1 - tj, k * tz + tz - 1 - tk);
if (v == 255) {
has_details = true;
} else {
is_empty = false;
}
} } }
if (has_details && !is_empty) {
// ok!
pal2pos[pal] = v3i(i, j, k);
}
} // not known
} // lbl < 255
} } }
// output detailed version
FILE *f = fopen(fout, "wb");
sl_assert(f != NULL);
long sx = tx*S.xsize(), sy = ty*S.ysize(), sz = tz*S.zsize();
fwrite(&sx, 4, 1, f);
fwrite(&sy, 4, 1, f);
fwrite(&sz, 4, 1, f);
// build high res grid
Array3D<uchar> detailed;
detailed.allocate(sx, sy, sz);
detailed.fill(255);
ForIndex(k, S.zsize()) { ForIndex(j, S.ysize()) { ForIndex(i, S.xsize()) {
int id = -1;
ForIndex(l, num_lbls) {
if (S.at(i, j, k)[l]) {
id = l;
break;
}
}
sl_assert(id > -1);
uchar lbl = id2pal[id];
if (lbl < 255) {
// output high res tile
if (pal2pos.find(lbl) != pal2pos.end()) {
v3i pos = pal2pos[lbl];
ForIndex(tk, tz) { ForIndex(tj, ty) { ForIndex(ti, tx) {
detailed.at(i*tx + ti, j*ty + tj, k*tz + tk)
= (highres.at(pos[0] * tx + tx - 1 - ti, pos[1] * ty + ty - 1 - tj, pos[2] * tz + tz - 1 - tk) != 255 ? solid_color : 255);
} } }
} else {
ForIndex(tk, tz) { ForIndex(tj, ty) { ForIndex(ti, tx) {
detailed.at(i*tx + ti, j*ty + tj, k*tz + tk) = solid_color;
} } }
}
}
} } }
ForIndex(i, sx) { ForIndex(j, sy) { ForRangeReverse(k, sz - 1, 0) {
fwrite(&detailed.at(i, j, k), sizeof(uchar), 1, f);
} } }
fwrite(palette.raw(), sizeof(v3b), 256, f);
fclose(f);
}
/* -------------------------------------------------------- */
// Implements model synthesis for a 3D problem
// This is using the basic building blocks above.
// The approach used here is similar to Paul Merrell's model
// synthesis: it starts empty and attempts to synthesize within
// sub-domains. This works best on difficult problems.
// WFC is also possible by synthesizing within the entire domain.
//
// Some of the constants below (number of iterations, etc.) could
// be changed for better/faster results depending on the input problem.
// Whether everything can be determined automatically is an interesting
// (and likely difficult) question.
void solve3D()
{
Timer tm("solve3D");
string fullpath = string(SRC_PATH "/exemplars/") + problem + ".slab.vox";
//// setup a 3D problem
load3DProblem(fullpath.c_str());
// array being synthesized
Array3D<Presence> S;
S.allocate(sz, sz, sz);
//// init as empty
if (pal2id.find(254) != pal2id.end()) {
// ground is being used
init_global_empty(S, pal2id[255], pal2id[254]);
} else {
// no ground: use an empty border along all faces
init_global_empty(S, pal2id[255]);
}
//// synthesize subsets
int num_failed = 0;
int num_success = 0;
int num_passes = sz; // increases on larger domains.
int num_sub_synth = 32; // will use twice that on ground level
ForIndex(p, num_passes) {
ForIndex(n, p == 0 ? 2 * num_sub_synth : num_sub_synth) {
// random size
int subsz = min(15, 8 + (rand() % 9));
// random location
// (forces the first pass to be on the ground, as many problems have ground constraints)
AAB<3, int> sub;
sub.minCorner() = v3i(
rand() % (sz - subsz),
rand() % (sz - subsz),
p == 0 ? 0 : rand() % (sz - subsz));
sub.maxCorner() = sub.minCorner() + v3i(subsz, subsz, subsz);
// backup current
Array3D<Presence> backup = S;
// try reseting the subdomain (may fail)
int num_solids_before = num_solids_sub(S, pal2id[255]/*empty*/, sub);
if (reinit_sub(S, pal2id[255], sub)) {
// try synthesizing (may fail)
int num_solids;
if (synthesize(S, pal2id[255]/*empty*/, num_solids, sub)) {
if (num_solids >= num_solids_before) { // only accept if less (or eq) non empty appear
num_success++;
} else {
num_failed++;
S = backup;
}
} else {
// synthesis failed: retry
num_failed++;
S = backup;
}
} else {
// reinit failed: cannot work here
num_failed++;
S = backup;
}
}
// display progress
Console::cursorGotoPreviousLineStart();
std::cerr << sprint("attempt %3d / %3d, failures: %3d, successes: %3d\n", (p+1) * num_sub_synth, num_sub_synth*num_passes, num_failed, num_success);
}
// output final
saveAsVox(SRC_PATH "/results/synthesized.slab.vox", S);
// output detailed if a tilemap exists
string low = (string(SRC_PATH "/exemplars/") + tilemap + ".slab.vox");
string detailed = (string(SRC_PATH "/exemplars/") + tilemap + "_detailed.slab.vox");
if (LibSL::System::File::exists(detailed.c_str())) {
saveAsVoxDetailed(
low.c_str(),
detailed.c_str(),
SRC_PATH "/results/synthesized_detailed.slab.vox",
S);
}
}
/* -------------------------------------------------------- */
// This is where it all begins.
int main(int argc, char **argv)
{
try {
// random seed
srand((unsigned int)time(NULL));
// let's synthesize!
std::cerr << Console::white << "Synthesizing a voxel model!" << Console::gray << std::endl << std::endl;
solve3D();
} catch (Fatal& e) {
std::cerr << Console::red << e.message() << Console::gray << std::endl;
return (-1);
}
return (0);
}
/* -------------------------------------------------------- */