-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_ot.py
381 lines (354 loc) · 19.9 KB
/
train_ot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import transformers
import torch
import os
import json
import time
import copy
import random
import argparse
import numpy as np
from datetime import datetime
from torch.nn import DataParallel
import torch.nn.functional as F
from tqdm import tqdm
import subprocess
import wandb
from gpt2_model import GPT2LMHeadModel
from OT import IPOT_distance2
# wandb.init(project="ot")
BOS = 50257
EOS = 50256
PAD_ID = 15636
MAX_LEN = 512
def rebuild_sent(line):
ws = []
for i, w in enumerate(line.split()):
if w[-1] == ',':
ws.append(w[:-1])
ws.append(',')
elif i == len(line.split()) - 1:
if w[-1] == '.':
ws.append(w[:-1])
ws.append('.')
else:
ws.append(w)
else:
ws.append(w)
return ' '.join(ws)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡')
parser.add_argument('--model_config', default='config/model_config_small.json', type=str, required=False,
help='选择模型参数')
parser.add_argument('--tokenizer_path', default='cache/vocab_small.txt', type=str, required=False, help='选择词库')
parser.add_argument('--raw_data_path', default='data/train.json', type=str, required=False, help='原始训练语料')
parser.add_argument('--tokenized_train_path', default='data/', type=str, required=True,
help='训练集tokenized语料存放位置')
parser.add_argument('--src_tokenized_train_path', default='data/', type=str, required=True,
help='训练集src tokenized语料存放位置')
parser.add_argument('--tgt_tokenized_train_path', default='data/', type=str, required=True,
help='训练集tgt tokenized语料存放位置')
parser.add_argument('--text_mask_train_path', default='data/', type=str, required=True,
help='训练集构造文本mask文件存放位置')
parser.add_argument('--entity_mask_train_path', default='data/', type=str, required=True,
help='训练集构造实体mask文件存放位置')
parser.add_argument('--src_dev', default='data/', type=str, required=False,
help='验证集输入语料存放位置')
parser.add_argument('--tgt_dev', default='data/', type=str, required=False,
help='验证集输出语料存放位置')
parser.add_argument('--log_file', default='data/', type=str, required=False,
help='log文件存放位置')
parser.add_argument('--epochs', default=5, type=int, required=False, help='训练循环')
parser.add_argument('--start_epochs', default=0, type=int, required=False, help='开始训练的轮数')
parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size')
parser.add_argument('--lr', default=1.5e-4, type=float, required=False, help='学习率')
parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数')
parser.add_argument('--seed', default=1234, type=int, required=False, help='random seed')
parser.add_argument('--log_step', default=1, type=int, required=False, help='多少步汇报一次loss')
parser.add_argument('--stride', default=768, type=int, required=False, help='训练时取训练数据的窗口步长')
parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累')
parser.add_argument('--fp16', action='store_true', help='混合精度')
parser.add_argument('--fp16_opt_level', default='O1', type=str, required=False)
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)
parser.add_argument('--num_pieces', default=100, type=int, required=False, help='将训练语料分成多少份')
parser.add_argument('--start_save_epoch', default=1, type=int, required=False, help='开始保存模型的轮数')
parser.add_argument('--output_dir', default='model/', type=str, required=False, help='模型输出路径')
parser.add_argument('--pretrained_model', default='', type=str, required=False, help='模型训练起点路径')
parser.add_argument('--shuffle', action='store_true', help='是否在每个epoch打乱batch顺序')
parser.add_argument('--segment', action='store_true', help='中文以词为单位')
args = parser.parse_args()
print('args:\n' + args.__repr__())
os.environ["CUDA_VISIBLE_DEVICES"] = args.device # 此处设置程序使用哪些显卡
model_config = transformers.modeling_gpt2.GPT2Config.from_json_file(args.model_config)
print('config:\n' + model_config.to_json_string())
n_ctx = model_config.n_ctx
full_tokenizer = transformers.GPT2Tokenizer.from_pretrained(args.tokenizer_path)
full_tokenizer.add_tokens(['<table2text>'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('using device:', device)
tokenized_train_path = args.tokenized_train_path
src_tokenized_train_path = args.src_tokenized_train_path
tgt_tokenized_train_path = args.tgt_tokenized_train_path
text_mask_train_path = args.text_mask_train_path
entity_mask_train_path = args.entity_mask_train_path
src_dev = args.src_dev
tgt_dev = args.tgt_dev
epochs = args.epochs
batch_size = args.batch_size
lr = args.lr
warmup_steps = args.warmup_steps
log_step = args.log_step
stride = args.stride
gradient_accumulation = args.gradient_accumulation
fp16 = args.fp16 # 不支持半精度的显卡请勿打开
fp16_opt_level = args.fp16_opt_level
max_grad_norm = args.max_grad_norm
num_pieces = args.num_pieces
output_dir = args.output_dir
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if not args.pretrained_model:
model = transformers.modeling_gpt2.GPT2LMHeadModel(config=model_config)
else:
# model = transformers.modeling_gpt2.GPT2LMHeadModel.from_pretrained(args.pretrained_model)
model = GPT2LMHeadModel.from_pretrained(args.pretrained_model)
model.resize_token_embeddings(len(full_tokenizer))
model.train()
model.to(device)
multi_gpu = False
print('calculating total steps')
with open(tokenized_train_path, 'r') as f:
train_token_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
total_steps = len(train_token_lines) * epochs / batch_size
with open(src_tokenized_train_path, 'r') as f:
train_src_token_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
with open(tgt_tokenized_train_path, 'r') as f:
train_tgt_token_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
with open(text_mask_train_path, 'r') as f:
text_mask_train_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
with open(entity_mask_train_path, 'r') as f:
entity_mask_train_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
optimizer = transformers.AdamW(model.parameters(), lr=lr, correct_bias=True)
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=total_steps)
print('total steps = {}'.format(total_steps))
with open(src_dev, 'r') as fr:
dev_srcs = [line.strip() for line in fr.readlines()]
log_file = open(args.log_file, 'a')
if fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=fp16_opt_level)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = DataParallel(model)
multi_gpu = True
print('starting training')
running_loss = 0
# prepare train batch data
train_batch_data = []
for step in range(len(train_token_lines) // batch_size):
batch = train_token_lines[step * batch_size: (step + 1) * batch_size]
src_batch = train_src_token_lines[step * batch_size: (step + 1) * batch_size]
tgt_batch = train_tgt_token_lines[step * batch_size: (step + 1) * batch_size]
text_mask_batch = text_mask_train_lines[step * batch_size: (step + 1) * batch_size]
entity_mask_batch = entity_mask_train_lines[step * batch_size: (step + 1) * batch_size]
max_length = max([len(ids) for ids in batch])
# src_max_length = max([len(ids) for ids in src_batch])
# tgt_min_length = min([sum(ms) for ms in text_mask_batch])
# tgt_max_length = max([sum(ms) for ms in text_mask_batch])
# max_length = max([ms.index(1) + tgt_max_length for ms in text_mask_batch])
batch_labels = []
batch_inputs = []
text_masks = []
entity_masks = []
attention_masks = []
tgt_batch_masks = []
for ids, text_mask_ids, entity_mask_ids in zip(batch, text_mask_batch, entity_mask_batch):
int_ids_for_labels = [PAD_ID] * max_length
int_ids_for_inputs = [PAD_ID] * max_length
text_mask = [0] * max_length
entity_mask = [0] * max_length
attention_mask = [0] * max_length
tgt_batch_mask = [0] * max_length
for x_i, x in enumerate(ids):
int_ids_for_labels[x_i] = x
int_ids_for_inputs[x_i] = x
text_mask[x_i] = text_mask_ids[x_i]
attention_mask[x_i] = 1
# tgt_batch_mask[x_i] = text_mask_ids[x_i] if sum(tgt_batch_mask) < tgt_min_length else 0
tgt_batch_mask[x_i] = text_mask_ids[x_i]
entity_mask[x_i] = entity_mask_ids[x_i]
batch_labels.append(int_ids_for_labels)
batch_inputs.append(int_ids_for_inputs)
text_masks.append(text_mask)
entity_masks.append(entity_mask)
attention_masks.append(attention_mask)
tgt_batch_masks.append(tgt_batch_mask)
train_batch_data.append([batch_labels, batch_inputs, attention_masks, text_masks, src_batch, tgt_batch, tgt_batch_masks, entity_masks])
dev_epoch2bleu = {}
temperature = 1.0
for epoch in range(args.start_epochs, epochs):
print('epoch {}'.format(epoch + 1))
now = datetime.now()
print('time: {}'.format(now))
piece_num = 0
if args.shuffle:
random.shuffle(train_batch_data)
for step in range(len(train_token_lines) // batch_size):
# prepare data
batch_labels = train_batch_data[step][0]
batch_inputs = train_batch_data[step][1]
attention_masks = train_batch_data[step][2]
text_masks = train_batch_data[step][3]
src_batch_labels = train_batch_data[step][4]
tgt_batch_labels = train_batch_data[step][5]
tgt_batch_masks = train_batch_data[step][6]
entity_masks = train_batch_data[step][7]
batch_labels = torch.tensor(batch_labels).long().to(device)
batch_inputs = torch.tensor(batch_inputs).long().to(device)
attention_masks = torch.tensor(attention_masks).bool().to(device)
text_masks = torch.tensor(text_masks).bool().to(device)
src_batch_labels = [torch.tensor(src_labels).long().to(device) for src_labels in src_batch_labels]
# src_batch_labels = torch.tensor(src_batch_labels).long().to(device)
tgt_batch_labels = [torch.tensor(tgt_labels).long().to(device) for tgt_labels in tgt_batch_labels]
tgt_batch_masks = torch.tensor(tgt_batch_masks).bool().to(device)
entity_masks = torch.tensor(entity_masks).bool().to(device)
# forward pass
outputs = model.forward(input_ids=batch_inputs, labels=batch_labels, attention_mask=attention_masks, loss_mask=text_masks)
lm_loss, logits = outputs[:2]
# get language model loss
if multi_gpu:
lm_loss = lm_loss.mean()
if gradient_accumulation > 1:
lm_loss = lm_loss / gradient_accumulation
if epoch >= 10:
if multi_gpu:
gpt_embeddings = model.module.get_input_embeddings()
else:
gpt_embeddings = model.get_input_embeddings()
# src_batch_words = gpt_embeddings(src_batch_labels)
src_batch_words = [gpt_embeddings(src_labels) for src_labels in src_batch_labels]
tgt_batch_words = [gpt_embeddings(tgt_labels) for tgt_labels in tgt_batch_labels]
logits = F.softmax(logits / temperature, 2)
logits = logits[..., :-1, :].contiguous()
seq_batch_words = torch.matmul(logits, gpt_embeddings.weight)
'''
tgt_batch_masks = tgt_batch_masks[..., 1:].contiguous()
tgt_batch_masks = tgt_batch_masks.unsqueeze(-1).expand(seq_batch_words.size())
'''
entity_masks = entity_masks[..., 1:].contiguous()
entity_masks = entity_masks.unsqueeze(-1).expand(seq_batch_words.size())
'''
tgt_batch_words = torch.masked_select(seq_batch_words, tgt_batch_masks).view(seq_batch_words.size(0), -1, seq_batch_words.size(2)).contiguous()
src_words = F.normalize(src_batch_words, p=2, dim=2, eps=1e-12)
tgt_words = F.normalize(tgt_batch_words, p=2, dim=2, eps=1e-12)
# get optimal transport loss
cosine_cost = 1 - torch.einsum('aij,ajk->aik', src_words, tgt_words.transpose(1,2))
distance = IPOT_distance2(cosine_cost, device)
'''
src_pred_distance = []
# tgt_pred_distance = []
for src_words, tgt_words, seq_words, tgt_masks in zip(src_batch_words, tgt_batch_words, seq_batch_words, entity_masks):
src_words = src_words.unsqueeze(0)
# tgt_words = tgt_words.unsqueeze(0)
seq_words = seq_words.unsqueeze(0)
tgt_masks = tgt_masks.unsqueeze(0)
pred_words = torch.masked_select(seq_words, tgt_masks).view(seq_words.size(0), -1, seq_words.size(2)).contiguous()
src_words = F.normalize(src_words, p=2, dim=2, eps=1e-12)
# tgt_words = F.normalize(tgt_words, p=2, dim=2, eps=1e-12)
pred_words = F.normalize(pred_words, p=2, dim=2, eps=1e-12)
# get optimal transport loss
src_pred_cosine_cost = 1 - torch.einsum('aij,ajk->aik', src_words, pred_words.transpose(1,2))
# tgt_pred_cosine_cost = 1 - torch.einsum('aij,ajk->aik', tgt_words, pred_words.transpose(1,2))
src_pred_distance.append(IPOT_distance2(src_pred_cosine_cost, device, t_steps=10, beta=0.5, k_steps=3).mean())
# tgt_pred_distance.append(IPOT_distance2(tgt_pred_cosine_cost, device, t_steps=10, beta=0.5, k_steps=3).mean())
src_pred_ot_loss = sum(src_pred_distance) / float(len(src_pred_distance))
# tgt_pred_ot_loss = sum(tgt_pred_distance) / float(len(tgt_pred_distance))
# loss = lm_loss + 0.1 * src_pred_ot_loss + 0.1 * tgt_pred_ot_loss
loss = lm_loss + 0.2 * src_pred_ot_loss
else:
loss = lm_loss
# loss backward
if fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
# optimizer step
if (step + 1) % gradient_accumulation == 0:
running_loss += loss.item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if (step + 1) % log_step == 0:
print('now time: {}:{}. Step {} of piece {} of epoch {}, loss {}'.format(
datetime.now().hour,
datetime.now().minute,
(step + 1) // gradient_accumulation,
piece_num,
epoch + 1,
running_loss / log_step))
running_loss = 0
piece_num += 1
if epoch + 1 >= args.start_save_epoch:
print('saving model for epoch {}'.format(epoch + 1))
if not os.path.exists(output_dir + 'model_epoch{}'.format(epoch + 1)):
os.mkdir(output_dir + 'model_epoch{}'.format(epoch + 1))
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir + 'model_epoch{}'.format(epoch + 1))
new_model = transformers.modeling_gpt2.GPT2LMHeadModel.from_pretrained(output_dir + 'model_epoch{}'.format(epoch + 1))
new_model.to(device)
new_model.eval()
total_steps = len(dev_srcs)
output_lst = []
with torch.no_grad():
for step in tqdm(range(total_steps)):
dev_inputs = dev_srcs[step: step + 1]
input_ids = []
for dev_input in dev_inputs:
input_ids.append(full_tokenizer.encode(dev_input))
if len(input_ids[0]) > MAX_LEN:
input_ids[0] = input_ids[0][:MAX_LEN] + [BOS]
print('source input over max length')
src_lengths = len(input_ids[0])
batch_input = torch.tensor(input_ids).long().to(device)
output = new_model.generate(batch_input, do_sample=False, max_length=src_lengths + 50, num_beams=5, eos_token_ids=EOS)
# output = new_model.generate(batch_input, do_sample=False, max_length=src_lengths + 50, num_beams=5)
output_ids = output.tolist()[0]
try:
tgt_ids = output_ids[(output_ids.index(BOS) + 1): output_ids.index(EOS)]
except:
tgt_ids = output_ids[(output_ids.index(BOS) + 1):]
output_sent = rebuild_sent(full_tokenizer.decode(tgt_ids))
output_lst.append(output_sent)
save_time = time.time()
with open('gen/dev/dev_gen_%f.txt'%save_time, 'w') as fw:
fw.write('\n'.join(output_lst))
cmd = "perl %s %s" % ("multi-bleu.perl", tgt_dev)
p = subprocess.Popen(cmd.split(), stdin=open('gen/dev/dev_gen_%f.txt'%save_time), stdout=subprocess.PIPE)
lines = p.stdout.readlines()
if len(lines) > 0:
print(lines[0].decode("utf-8"))
dev_bleu = float(str(lines[0]).split()[2].split(",")[0])
dev_epoch2bleu[epoch + 1] = dev_bleu
# log_file.write('epoch%d bleu: %.2f\n'%(epoch + 1, dev_bleu))
log_file.write('epoch%d '%(epoch + 1) + lines[0].decode("utf-8"))
log_file.flush()
# wandb.log({'epoch': epoch + 1, 'bleu': dev_bleu})
print('epoch {} finished'.format(epoch + 1))
then = datetime.now()
print('time: {}'.format(then))
print('time for one epoch: {}'.format(then - now))
print('training finished')
sorted_dev_epoch2bleu = sorted(dev_epoch2bleu.items(), key=lambda item: item[1], reverse=True)
max_bleu_epoch, max_bleu_score = sorted_dev_epoch2bleu[0]
log_file.write('epoch%d model has highest bleu score: %.2f'%(max_bleu_epoch, max_bleu_score))
log_file.close()
if __name__ == '__main__':
main()