-
Notifications
You must be signed in to change notification settings - Fork 29
/
main.py
executable file
·107 lines (87 loc) · 4.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from UNIT import UNIT
import argparse
from utils import *
"""parsing and configuration"""
def parse_args():
desc = "Tensorflow implementation of UNIT"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--phase', type=str, default='train', help='train or test ?')
parser.add_argument('--dataset', type=str, default='cat2dog', help='dataset_name')
parser.add_argument('--epoch', type=int, default=200, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=1, help='The size of batch')
parser.add_argument('--lr', type=float, default=0.0001, help='The learning rate')
parser.add_argument('--GAN_weight', type=float, default=10.0, help='Weight about GAN, lambda0')
parser.add_argument('--KL_weight', type=float, default=0.1, help='Weight about VAE, lambda1')
parser.add_argument('--L1_weight', type=float, default=100.0, help='Weight about VAE, lambda2' )
parser.add_argument('--KL_cycle_weight', type=float, default=0.1, help='Weight about VAE Cycle, lambda3')
parser.add_argument('--L1_cycle_weight', type=float, default=100.0, help='Weight about VAE Cycle, lambda4')
parser.add_argument('--ch', type=int, default=64, help='base channel number per layer')
parser.add_argument('--n_encoder', type=int, default=3, help='The number of encoder')
parser.add_argument('--n_enc_resblock', type=int, default=3, help='The number of encoder_resblock')
parser.add_argument('--n_enc_share', type=int, default=1, help='The number of share_encoder')
parser.add_argument('--n_gen_share', type=int, default=1, help='The number of share_generator')
parser.add_argument('--n_gen_resblock', type=int, default=3, help='The number of generator_resblock')
parser.add_argument('--n_gen_decoder', type=int, default=3, help='The number of generator_decoder')
parser.add_argument('--n_dis', type=int, default=6, help='The number of discriminator layer')
parser.add_argument('--res_dropout', type=float, default=0.0, help='The dropout ration of Resblock')
parser.add_argument('--smoothing', type=bool, default=False, help='smoothing loss use or not')
parser.add_argument('--lsgan', type=bool, default=False, help='lsgan loss use or not')
parser.add_argument('--norm', type=str, default='instance', help='The norm type')
parser.add_argument('--replay_memory', type=bool, default=False, help='discriminator pool use or not')
parser.add_argument('--pool_size', type=int, default=50, help='The size of image buffer that stores previously generated images')
parser.add_argument('--img_size', type=int, default=256, help='The size of image')
parser.add_argument('--img_ch', type=int, default=3, help='The size of image channel')
parser.add_argument('--augment_flag', type=bool, default=True, help='Image augmentation use or not')
parser.add_argument('--normal_weight_init', type=bool, default=True, help='normal initialization use or not')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory name to save the checkpoints')
parser.add_argument('--result_dir', type=str, default='results',
help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
parser.add_argument('--sample_dir', type=str, default='samples',
help='Directory name to save the samples on training')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --checkpoint_dir
check_folder(args.checkpoint_dir)
# --result_dir
check_folder(args.result_dir)
# --result_dir
check_folder(args.log_dir)
# --sample_dir
check_folder(args.sample_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# open session
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
gan = UNIT(sess, args)
# build graph
gan.build_model()
# show network architecture
show_all_variables()
if args.phase == 'train' :
# launch the graph in a session
gan.train()
print(" [*] Training finished!")
if args.phase == 'test' :
gan.test()
print(" [*] Test finished!")
if __name__ == '__main__':
main()