-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
58 lines (43 loc) · 1.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import torch.nn.parallel
import torch.optim
from options.config import Config
from options.args import *
from libs.prepare import *
from libs.S1_encoding import *
from libs.S2_factorization import *
from libs.S3_convert import *
def run_hierarchy_encoding(cfg, dict_DB):
ada_contour_generator = Generate_AdaContour(cfg, dict_DB)
ada_contour_generator.run()
def run_factorization(cfg, dict_DB):
factorization = Factorization(cfg, dict_DB)
factorization.run()
def run_convert(cfg, dict_DB):
convertor = Convert(cfg, dict_DB)
convertor.run()
def main():
# option
args = parse_args()
cfg = Config(args)
# gpu setting
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpu_id
torch.backends.cudnn.deterministic = True
# prepare
dict_DB = dict()
dict_DB = prepare_visualization(cfg, dict_DB)
dict_DB = prepare_dataloader(cfg, dict_DB)
# run
if cfg.stage == "encoding":
if cfg.mode == "hierarchy_encoding":
run_hierarchy_encoding(cfg, dict_DB)
else:
raise NotImplementedError
elif cfg.stage == "factorization":
run_factorization(cfg, dict_DB)
elif cfg.stage == "convert":
run_convert(cfg, dict_DB)
else:
print("Please mode check!")
if __name__ == "__main__":
main()