-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathmobilenet.js
82 lines (72 loc) · 2.55 KB
/
mobilenet.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import {IMAGENET_CLASSES} from './imagenet_classes';
const GOOGLE_CLOUD_STORAGE_DIR =
'https://storage.googleapis.com/tfjs-models/savedmodel/';
const MODEL_FILE_URL = 'mobilenet_v2_1.0_224/model.json';
const INPUT_NODE_NAME = 'images';
const OUTPUT_NODE_NAME = 'module_apply_default/MobilenetV2/Logits/output';
const PREPROCESS_DIVISOR = tf.scalar(255 / 2);
export class MobileNet {
constructor() {}
async load() {
this.model = await tf.loadGraphModel(
GOOGLE_CLOUD_STORAGE_DIR + MODEL_FILE_URL);
}
dispose() {
if (this.model) {
this.model.dispose();
}
}
/**
* Infer through MobileNet. This does standard ImageNet pre-processing before
* inferring through the model. This method returns named activations as well
* as softmax logits.
*
* @param input un-preprocessed input Array.
* @return The softmax logits.
*/
predict(input) {
const preprocessedInput = tf.div(
tf.sub(input.asType('float32'), PREPROCESS_DIVISOR),
PREPROCESS_DIVISOR);
const reshapedInput =
preprocessedInput.reshape([1, ...preprocessedInput.shape]);
return this.model.execute(
{[INPUT_NODE_NAME]: reshapedInput}, OUTPUT_NODE_NAME);
}
getTopKClasses(logits, topK) {
const predictions = tf.tidy(() => {
return tf.softmax(logits);
});
const values = predictions.dataSync();
predictions.dispose();
let predictionList = [];
for (let i = 0; i < values.length; i++) {
predictionList.push({value: values[i], index: i});
}
predictionList = predictionList
.sort((a, b) => {
return b.value - a.value;
})
.slice(0, topK);
return predictionList.map(x => {
return {label: IMAGENET_CLASSES[x.index], value: x.value};
});
}
}