-
Notifications
You must be signed in to change notification settings - Fork 17
/
export_pseudo_label.py
137 lines (119 loc) · 5.72 KB
/
export_pseudo_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
import json
import os
import argparse
import random
from pathlib import Path
from tqdm import tqdm
import numpy as np
from PIL import Image
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from util.visualizer import COCOVisualizer
from datasets import build_dataset, get_coco_api_from_dataset
from datasets.coco import make_coco_transforms
from models import build_model
from main import get_args_parser
def main(args):
utils.init_distributed_mode(args)
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only."
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, post_processors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Total number of params in model: ', n_parameters)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model_ema'])
DETECTION_THRESHOLD = args.det_thr
dataset_train = build_dataset(image_set='train', args=args)
if args.distributed:
sampler = DistributedSampler(dataset_train, shuffle=False)
else:
sampler = torch.utils.data.SequentialSampler(dataset_train)
dataloader_train = DataLoader(dataset_train,
1,
sampler=sampler,
drop_last=False,
collate_fn=lambda x: x[0], # batch size is one
num_workers=args.num_workers)
model.eval()
if args.visualize:
vslzr = COCOVisualizer()
def visualize(img, targets, results, filter, name):
mask = filter(results)
vslzr.visualize(img[0], dict(
boxes=results['boxes'][mask],
size=targets['orig_size'],
box_label=[f"{results['box_label'][i]}_{results['scores'][i].item():.3f}" for i, p in enumerate(mask) if p],
# box_label=[f"{results['box_label'][i]}" for i, p in enumerate(mask) if p],
image_id=idx,
), caption=name, savedir=os.path.join(args.output_dir, "vis"), show_in_console=False)
else:
annotations = list()
with torch.no_grad():
for idx, (img, targets) in tqdm(enumerate(dataloader_train)):
w, h = img.shape[-2:] if args.visualize else targets['orig_size']
target_sizes = torch.tensor([[w, h]], device=device)
img = img.to(device)
img = img.unsqueeze(0) # adding batch dimension
outputs = model(img, categories=targets['class_labels'])
results = post_processors['bbox'](outputs, target_sizes)[0]
if args.visualize:
results['box_label'] = [targets['class_labels'][int(item)] for item in results['labels']]
def score(results):
return results['scores'] >= DETECTION_THRESHOLD
visualize(img, targets, results, score, 'threshold0.2')
else:
selected = results['scores'] >= DETECTION_THRESHOLD
labels = results['labels'][selected]
boxes = results['boxes'][selected]
boxes[:,2:] = boxes[:,2:] - boxes[:,:2]
scores = results['scores'][selected]
for label, box, confidence in zip(labels, boxes, scores):
annotation = dict(
image_id=targets['image_id'].item(),
bbox=box.tolist(),
class_label=targets['class_labels'][label],
score=confidence.item(),
)
annotations.append(annotation)
with open(f"pseudo_label_thr{DETECTION_THRESHOLD}_rand{utils.get_rank()}.json", "w") as f:
json.dump(annotations, f)
if utils.is_dist_avail_and_initialized():
torch.distributed.barrier()
if utils.is_main_process():
annotations_all = list()
for i in range(utils.get_world_size()):
with open(f"pseudo_label_thr{DETECTION_THRESHOLD}_rand{i}.json", "r") as f:
part_annotations = json.load(f)
annotations_all.extend(part_annotations)
with open(f"pseudo_label_thr{DETECTION_THRESHOLD}.json", "w") as f:
json.dump(annotations_all, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser("CORA", parents=[get_args_parser()])
parser.add_argument('--cls_annotation_path', required=True, type=str)
parser.add_argument('--det_thr', default=0.2, type=float)
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)