diff --git a/src/spotpy/examples/spot_setup_hymod_python_loguniform.py b/src/spotpy/examples/spot_setup_hymod_python_loguniform.py new file mode 100644 index 00000000..d558c8bd --- /dev/null +++ b/src/spotpy/examples/spot_setup_hymod_python_loguniform.py @@ -0,0 +1,76 @@ +""" +Copyright 2015 by Tobias Houska +This file is part of Statistical Parameter Estimation Tool (SPOTPY). + +:author: Tobias Houska + +This example implements the python version of hymod into SPOTPY. +""" + + +import os + +from spotpy.examples.hymod_python.hymod import hymod +from spotpy.objectivefunctions import rmse +from spotpy.parameter import Uniform, Loguniform + + +class spot_setup(object): + cmax = Loguniform(low=1.0, high=500, optguess=412.33) + bexp = Uniform(low=0.1, high=2.0, optguess=0.1725) + alpha = Uniform(low=0.1, high=0.99, optguess=0.8127) + Ks = Uniform(low=0.001, high=0.10, optguess=0.0404) + Kq = Uniform(low=0.1, high=0.99, optguess=0.5592) + # fake1 =spotpy.parameter.Uniform(low=0.1 , high=10, optguess=0.5592) + # fake2 =spotpy.parameter.Uniform(low=0.1 , high=10, optguess=0.5592) + + def __init__(self, obj_func=None): + # Just a way to keep this example flexible and applicable to various examples + self.obj_func = obj_func + # Transform [mm/day] into [l s-1], where 1.783 is the catchment area + self.Factor = 1.783 * 1000 * 1000 / (60 * 60 * 24) + # Load Observation data from file + self.PET, self.Precip = [], [] + self.date, self.trueObs = [], [] + # Find Path to Hymod on users system + self.owd = os.path.dirname(os.path.realpath(__file__)) + self.hymod_path = self.owd + os.sep + "hymod_python" + climatefile = open(self.hymod_path + os.sep + "hymod_input.csv", "r") + headerline = climatefile.readline()[:-1] + + # Read model forcing in working storage (this is done only ones) + if ";" in headerline: + self.delimiter = ";" + else: + self.delimiter = "," + self.header = headerline.split(self.delimiter) + for line in climatefile: + values = line.strip().split(self.delimiter) + self.date.append(str(values[0])) + self.Precip.append(float(values[1])) + self.PET.append(float(values[2])) + self.trueObs.append(float(values[3])) + climatefile.close() + + def simulation(self, x): + # Here the model is actualy startet with one paramter combination + data = hymod(self.Precip, self.PET, x[0], x[1], x[2], x[3], x[4]) + sim = [] + for val in data: + sim.append(val * self.Factor) + # The first year of simulation data is ignored (warm-up) + return sim[366:] + + def evaluation(self): + return self.trueObs[366:] + + def objectivefunction(self, simulation, evaluation, params=None): + # SPOTPY expects to get one or multiple values back, + # that define the performance of the model run + if not self.obj_func: + # This is used if not overwritten by user + like = rmse(evaluation, simulation) + else: + # Way to ensure flexible spot setup class + like = self.obj_func(evaluation, simulation) + return like diff --git a/tutorials/tutorial_sceua_hymod.py b/tutorials/tutorial_sceua_hymod.py index 73e89386..85ba1934 100644 --- a/tutorials/tutorial_sceua_hymod.py +++ b/tutorials/tutorial_sceua_hymod.py @@ -12,7 +12,7 @@ import numpy as np import spotpy -from spotpy.examples.spot_setup_hymod_python import spot_setup +from spotpy.examples.spot_setup_hymod_python_loguniform import spot_setup if __name__ == "__main__": parallel = "seq" # Runs everthing in sequential mode