-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_cg.m
54 lines (49 loc) · 1.18 KB
/
train_cg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [w,run] = train_cg(x,w,lambda)
% TRAIN_CG Train a logistic regression model by conjugate gradient.
%
% W = TRAIN_CG(X,W) returns maximum-likelihood weights given data and a
% starting guess.
% Data is columns of X, each column already scaled by the output (+1 or -1).
% W is the starting guess for the parameters (a column).
% Written by Thomas P Minka
if nargin < 3
lambda = 0;
end
[d,n] = size(x);
flops(0);
old_g = zeros(size(w));
for iter = 1:1000
old_w = w;
% s1 = 1-sigma
s1 = 1./(1+exp(w'*x));
g = x*s1' - lambda*w;
flops(flops + flops_mul(w',x) + n*(flops_exp+2) + flops_mul(x,s1') + 2*d);
if iter == 1
u = g;
else
u = cg_dir(u, g, old_g);
end
% line search along u
ug = u'*g;
ux = u'*x;
a = s1.*(1-s1);
uhu = (ux.^2)*a' + lambda*(u'*u);
w = w + (ug/uhu)*u;
old_g = g;
flops(flops + flops_mul(u',g) + flops_mul(u',x) + 2*n + ...
n+flops_mul(1,n,1) + 2*d+1);
if lambda > 0
flops(flops + 1+flops_mul(u',u));
end
run.w(:,iter) = w;
run.flops(iter) = flops;
run.e(iter) = logProb(x,w) - 0.5*lambda*w'*w;
if max(abs(w - old_w)) < 1e-5
break
end
end
figure(2)
plot(run.e)
if iter == 1000
warning('not enough iters')
end