forked from microsoft/torchgeo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
executable file
·263 lines (227 loc) · 8.21 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python3
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""torchgeo model evaluation script."""
import argparse
import csv
import os
from typing import Any, Dict, Union
import pytorch_lightning as pl
import torch
from torchmetrics import Accuracy, JaccardIndex, Metric, MetricCollection
from torchgeo.trainers import ClassificationTask, SemanticSegmentationTask
from train import TASK_TO_MODULES_MAPPING
def set_up_parser() -> argparse.ArgumentParser:
"""Set up the argument parser.
Returns:
the argument parser
"""
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--task",
choices=TASK_TO_MODULES_MAPPING.keys(),
type=str,
help="name of task to test",
)
parser.add_argument(
"--input-checkpoint",
required=True,
help="path to the checkpoint file to test",
metavar="CKPT",
)
parser.add_argument(
"--gpu", default=0, type=int, help="GPU ID to use", metavar="ID"
)
parser.add_argument(
"--root-dir",
required=True,
type=str,
help="root directory of the dataset for the accompanying task",
)
parser.add_argument(
"-b",
"--batch-size",
default=2**4,
type=int,
help="number of samples in each mini-batch",
metavar="SIZE",
)
parser.add_argument(
"-w",
"--num-workers",
default=6,
type=int,
help="number of workers for parallel data loading",
metavar="NUM",
)
parser.add_argument(
"--seed", default=0, type=int, help="random seed for reproducibility"
)
parser.add_argument(
"--output-fn",
required=True,
type=str,
help="path to the CSV file to write results",
metavar="FILE",
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="print results to stdout"
)
return parser
def run_eval_loop(
model: pl.LightningModule,
dataloader: Any,
device: torch.device, # type: ignore[name-defined]
metrics: Metric,
) -> Any:
"""Runs a standard test loop over a dataloader and records metrics.
Args:
model: the model used for inference
dataloader: the dataloader to get samples from
device: the device to put data on
metrics: a torchmetrics compatible Metric to score the output from the model
Returns:
the result of ``metric.compute()``
"""
for batch in dataloader:
x = batch["image"].to(device)
if "mask" in batch:
y = batch["mask"].to(device)
elif "label" in batch:
y = batch["label"].to(device)
with torch.inference_mode():
y_pred = model(x)
metrics(y_pred, y)
results = metrics.compute()
metrics.reset()
return results
def main(args: argparse.Namespace) -> None:
"""High-level pipeline.
Runs a model checkpoint on a test set and saves results to file.
Args:
args: command-line arguments
"""
assert os.path.exists(args.input_checkpoint)
assert os.path.exists(args.root_dir)
TASK = TASK_TO_MODULES_MAPPING[args.task][0]
DATAMODULE = TASK_TO_MODULES_MAPPING[args.task][1]
# Loads the saved model from checkpoint based on the `args.task` name that was
# passed as input
model = TASK.load_from_checkpoint(args.input_checkpoint)
model.freeze()
model.eval()
dm = DATAMODULE( # type: ignore[call-arg]
seed=args.seed,
root_dir=args.root_dir,
num_workers=args.num_workers,
batch_size=args.batch_size,
)
dm.setup()
# Record model hyperparameters
if issubclass(TASK, ClassificationTask):
val_row: Dict[str, Union[str, float]] = {
"split": "val",
"classification_model": model.hparams["classification_model"],
"learning_rate": model.hparams["learning_rate"],
"weights": model.hparams["weights"],
"loss": model.hparams["loss"],
}
test_row: Dict[str, Union[str, float]] = {
"split": "test",
"classification_model": model.hparams["classification_model"],
"learning_rate": model.hparams["learning_rate"],
"weights": model.hparams["weights"],
"loss": model.hparams["loss"],
}
elif issubclass(TASK, SemanticSegmentationTask):
val_row: Dict[str, Union[str, float]] = { # type: ignore[no-redef]
"split": "val",
"segmentation_model": model.hparams["segmentation_model"],
"encoder_name": model.hparams["encoder_name"],
"encoder_weights": model.hparams["encoder_weights"],
"learning_rate": model.hparams["learning_rate"],
"loss": model.hparams["loss"],
}
test_row: Dict[str, Union[str, float]] = { # type: ignore[no-redef]
"split": "test",
"segmentation_model": model.hparams["segmentation_model"],
"encoder_name": model.hparams["encoder_name"],
"encoder_weights": model.hparams["encoder_weights"],
"learning_rate": model.hparams["learning_rate"],
"loss": model.hparams["loss"],
}
else:
raise ValueError(f"{TASK} is not supported")
# Compute metrics
device = torch.device("cuda:%d" % (args.gpu)) # type: ignore[attr-defined]
model = model.to(device)
if args.task == "etci2021": # Custom metric setup for testing ETCI2021
metrics = MetricCollection(
[Accuracy(num_classes=2), JaccardIndex(num_classes=2, reduction="none")]
).to(device)
val_results = run_eval_loop(model, dm.val_dataloader(), device, metrics)
test_results = run_eval_loop(model, dm.test_dataloader(), device, metrics)
val_row.update(
{
"overall_accuracy": val_results["Accuracy"].item(),
"jaccard_index": val_results["JaccardIndex"][1].item(),
}
)
test_row.update(
{
"overall_accuracy": test_results["Accuracy"].item(),
"jaccard_index": test_results["JaccardIndex"][1].item(),
}
)
else: # Test with PyTorch Lightning as usual
val_results = run_eval_loop(
model, dm.val_dataloader(), device, model.val_metrics
)
test_results = run_eval_loop(
model, dm.test_dataloader(), device, model.test_metrics
)
# Save the results and model hyperparameters to a CSV file
if issubclass(TASK, ClassificationTask):
val_row.update(
{
"average_accuracy": val_results["val_AverageAccuracy"].item(),
"overall_accuracy": val_results["val_OverallAccuracy"].item(),
}
)
test_row.update(
{
"average_accuracy": test_results["test_AverageAccuracy"].item(),
"overall_accuracy": test_results["test_OverallAccuracy"].item(),
}
)
elif issubclass(TASK, SemanticSegmentationTask):
val_row.update(
{
"overall_accuracy": val_results["val_Accuracy"].item(),
"jaccard_index": val_results["val_JaccardIndex"].item(),
}
)
test_row.update(
{
"overall_accuracy": test_results["test_Accuracy"].item(),
"jaccard_index": test_results["test_JaccardIndex"].item(),
}
)
assert set(val_row.keys()) == set(test_row.keys())
fieldnames = list(test_row.keys())
# Write to file
if not os.path.exists(args.output_fn):
with open(args.output_fn, "w") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
with open(args.output_fn, "a") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writerow(val_row)
writer.writerow(test_row)
if __name__ == "__main__":
parser = set_up_parser()
args = parser.parse_args()
pl.seed_everything(args.seed)
main(args)