This repository has been archived by the owner on Nov 18, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathdiagnosis.py
455 lines (385 loc) · 20.4 KB
/
diagnosis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#
# Copyright (C) 2022 Vaticle
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
import argparse
import inspect
import os
import networkx as nx
import torch
import torch.nn.functional as functional
import torch_geometric.transforms as transforms
from torch import as_tensor
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.nn import HGTConv
from typedb.client import *
from examples.diagnosis.dataset.generate import generate_example_data
from typedb_ml.networkx.query_graph import QueryGraph, Query
from typedb_ml.pytorch_geometric.dataset.dataset import DataSet
from typedb_ml.pytorch_geometric.transform.binary_link_prediction import LinkPredictionLabeller, \
binary_relations_to_edges, binary_link_prediction_edge_triplets
from typedb_ml.pytorch_geometric.transform.common import clear_unneeded_fields, store_concepts_by_type
from typedb_ml.pytorch_geometric.transform.encode import FeatureEncoder, CategoricalEncoder, ContinuousEncoder
from typedb_ml.typedb.load import load_typeql_file, FileType
from typedb_ml.typedb.type import get_thing_types
DATABASE = "diagnosis"
ADDRESS = "localhost:1729"
# Ignore any types that exist in the TypeDB instance but which aren't being used for learning to reduce the
# number of categories to embed
TYPES_TO_IGNORE = {'risk-factor', 'person-id', 'alcohol-risked-disease', 'person-at-alcohol-risk',
'person-at-hereditary-risk', 'hereditary-risked-disease', 'smoking-risked-disease',
'person-at-smoking-risk', 'person-at-age-risk', 'age-risked-disease', 'predicted-diagnosis'}
# Note that this determines the edge direction when converting from a TypeDB relation
RELATION_TYPE_TO_PREDICT = ('person', 'patient', 'diagnosis', 'diagnosed-disease', 'disease')
TYPE_ENCODING_SIZE = 16
ATTRIBUTE_ENCODING_SIZE = 16
# Attribute encoders encode the value of each attribute into a fixed-length feature vector. The encoders are
# defined on a per-type basis. Easily define your own encoders for specific attribute data in your TypeDB database
ATTRIBUTE_ENCODERS = {
# Categorical Attribute types and the values of their categories
'name': CategoricalEncoder(
['Diabetes Type II', 'Multiple Sclerosis', 'Blurred vision', 'Fatigue', 'Cigarettes', 'Alcohol'],
ATTRIBUTE_ENCODING_SIZE
),
# Continuous Attribute types and their min and max values
'severity': ContinuousEncoder(0, 1, ATTRIBUTE_ENCODING_SIZE),
'age': ContinuousEncoder(7, 80, ATTRIBUTE_ENCODING_SIZE),
'units-per-week': ContinuousEncoder(3, 29, ATTRIBUTE_ENCODING_SIZE)
}
def diagnosis_example(typedb_binary_directory,
num_graphs,
database=DATABASE,
address=ADDRESS,
schema_file_path="examples/diagnosis/dataset/schema.tql",
seed_data_file_path="examples/diagnosis/dataset/seed_data.tql"):
"""
Args:
typedb_binary_directory: Location of the TypeDB binary for the purpose of loading initial schema and data
num_graphs: Number of graphs to use for training and testing combined
database: The name of the database to retrieve data from
address: The address of the running TypeDB instance
schema_file_path: Path to the diagnosis schema file
seed_data_file_path: Path to the file containing seed data
Returns:
Final accuracies for training and for testing
"""
client = TypeDB.core_client(address)
create_database(client, database)
load_typeql_file(typedb_binary_directory, database, schema_file_path, FileType.Schema)
load_typeql_file(typedb_binary_directory, database, seed_data_file_path, FileType.Data)
generate_example_data(client, num_graphs, database=database)
session = client.session(database, SessionType.DATA)
# During the transforms below we convert the relations to predict to simple binary edges, which means the relation
# changes from a node to an edge. We therefore need to update the node_types and edge_types accordingly
# Remove the relation from the node types, since we will be using it as a binary edge instead
to_ignore = list(TYPES_TO_IGNORE) + [RELATION_TYPE_TO_PREDICT[2]]
node_types = [t for t in get_thing_types(session) if t not in to_ignore]
edge_type_triplets, edge_type_triplets_reversed = binary_link_prediction_edge_triplets(
session, RELATION_TYPE_TO_PREDICT, TYPES_TO_IGNORE
)
binary_edge_to_predict = RELATION_TYPE_TO_PREDICT[::2] # Evaluates to: ('person', 'diagnosis', 'disease')
binary_rev_edge_to_predict = edge_type_triplets_reversed[edge_type_triplets.index(RELATION_TYPE_TO_PREDICT[::2])] # Evaluates to: ('disease', 'rev_diagnosis', 'person')
edge_types = list({triplet[1] for triplet in edge_type_triplets})
transform = transforms.Compose([
lambda graph: binary_relations_to_edges(graph, RELATION_TYPE_TO_PREDICT[1:4]),
lambda graph: nx.convert_node_labels_to_integers(graph, label_attribute="concept"),
FeatureEncoder(node_types, edge_types, TYPE_ENCODING_SIZE, ATTRIBUTE_ENCODERS, ATTRIBUTE_ENCODING_SIZE),
LinkPredictionLabeller(RELATION_TYPE_TO_PREDICT[2]),
store_concepts_by_type,
clear_unneeded_fields
])
# Create a Dataset that will load graphs from TypeDB on-demand, based on an ID
dataset = DataSet([0], node_types, edge_type_triplets, build_queries, session, True, transform)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data, node_type_indices, edge_type_indices = dataset[0]
data = data.to_heterogeneous(
as_tensor(node_type_indices), as_tensor(edge_type_indices), node_types, edge_type_triplets
).to(device) # Get the first graph object.
# Reverse edges need to be present for bi-directional message-passing but the labels should not be considered
# for node and edge representations
data = transforms.ToUndirected()(data)
for edge_from, edge, edge_to in edge_type_triplets_reversed:
del data[edge_from, edge, edge_to].edge_label # Remove "reverse" label.
# Setting the neg_sampling_ratio higher than the number of places that a negative sample can be added causes the
# training set to have too few negative samples!
# Consider using other samplers from Pytorch Geometric in place of this one, depending on your use case
train_data, val_data, test_data = transforms.RandomLinkSplit(
num_val=0.2,
num_test=0.2,
neg_sampling_ratio=1.0,
edge_types=binary_edge_to_predict,
rev_edge_types=binary_rev_edge_to_predict
)(data)
# Add a new `links` attribute to store the edges for prediction so that they are definitely isolated from training
train_data.link_index = train_data.edge_label_index_dict[binary_edge_to_predict]
train_data.link_labels = train_data.edge_label_dict[binary_edge_to_predict]
val_data.link_index = val_data.edge_label_index_dict[binary_edge_to_predict]
val_data.link_labels = val_data.edge_label_dict[binary_edge_to_predict]
test_data.link_index = test_data.edge_label_index_dict[binary_edge_to_predict]
test_data.link_labels = test_data.edge_label_dict[binary_edge_to_predict]
# Delete the stores for the predicted edge now that we have stored it elsewhere above
data.links = data[binary_edge_to_predict]
data.rev_links = data[binary_rev_edge_to_predict]
del data[binary_edge_to_predict]
del data[binary_rev_edge_to_predict]
del train_data[binary_edge_to_predict]
del train_data[binary_rev_edge_to_predict]
del val_data[binary_edge_to_predict]
del val_data[binary_rev_edge_to_predict]
del test_data[binary_edge_to_predict]
del test_data[binary_rev_edge_to_predict]
class LinkPredictionModel(torch.nn.Module):
def __init__(self, in_channels: Union[int, Dict[str, int]], hidden_channels=128, heads=8):
super().__init__()
self.conv = HGTConv(in_channels, hidden_channels, heads=heads, metadata=train_data.metadata())
def encode(self, x_dict, edge_index_dict):
return self.conv(x_dict, edge_index_dict)
def decode(self, z, edge_label_index_dict):
row, col = edge_label_index_dict
logits = (z['person'][row] * z['disease'][col]).sum(dim=-1)
return logits
def decode_all(self, z):
logits = z['person'] @ z['disease'].t()
return logits
model = LinkPredictionModel(in_channels=-1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data, model = data.to(device), model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, weight_decay=0.001)
def train() -> float:
model.train()
optimizer.zero_grad()
z = model.encode(train_data.x_dict, train_data.edge_index_dict)
logits = model.decode(z, train_data.link_index)
loss = functional.binary_cross_entropy_with_logits(logits, train_data.link_labels)
loss.backward()
optimizer.step()
return float(loss)
@torch.no_grad()
def test() -> List[Tuple[float, float, float]]:
model.eval()
results = []
for split in train_data, val_data, test_data:
# We use `edge_index_dict` and `y_edge` for validation and testing to exclude the negative samples
z = model.encode(split.x_dict, split.edge_index_dict)
link_logits = model.decode(z, split.link_index)
link_probs = link_logits.sigmoid()
tp = ((link_probs > 0.5) * (split.link_labels == 1)).sum()
tn = ((link_probs < 0.5) * (split.link_labels == 0)).sum()
pos = (split.link_labels == 1).sum()
neg = (split.link_labels == 0).sum()
precision = tn / neg
recall = tp / pos
acc = (tp + tn) / (pos + neg)
results.append((float(acc), precision, recall))
return results
writer = SummaryWriter()
for edge_type, edge_store in zip(data.edge_types, data.edge_stores):
writer.add_histogram('('+', '.join(edge_type) + ')/edge_attr', edge_store["edge_attr"])
writer.add_histogram('('+', '.join(edge_type) + ')/y_edge', edge_store["y_edge"])
for node_type, node_store in zip(data.node_types, data.node_stores):
writer.add_histogram(node_type + '/x', node_store["x"])
best_val_acc = 0
start_patience = patience = 100
train_results = None
test_results = None
for epoch in range(1, 100):
loss = train()
writer.add_scalar('Loss/train', loss, epoch)
train_results, val_results, test_results = test()
writer.add_scalar('Accuracy/train', train_results[0], epoch)
writer.add_scalar('Accuracy/val', val_results[0], epoch)
writer.add_scalar('Accuracy/test', test_results[0], epoch)
writer.add_scalar('Precision/test', test_results[1], epoch)
writer.add_scalar('Recall/test', test_results[2], epoch)
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train: {train_results[0]:.4f}, '
f'Val: {val_results[0]:.4f}, Test: {test_results[0]:.4f}, Test Precision: {test_results[1]:.4f}, '
f'Test Recall: {test_results[2]:.4f}')
if best_val_acc <= val_results[0]:
patience = start_patience
best_val_acc = val_results[0]
else:
patience -= 1
if patience <= 0:
print('Stopping training as validation accuracy did not improve '
f'for {start_patience} epochs')
break
z = model.encode(data.x_dict, data.edge_index_dict)
final_edge_index = (model.decode_all(z).sigmoid() > 0.5).nonzero(as_tuple=False).cpu().detach().numpy()
# Get back the concepts for each of links predicted in order to insert the predictions into TypeDB
predicted_links = []
for p, d in final_edge_index:
predicted_links.append(
{
'person': data['concepts_by_type']['person'][p],
'disease': data['concepts_by_type']['disease'][d]
}
)
print("The following links have been predicted:")
print(predicted_links) # Bear in mind this is predicted links across *all* data: train, val and test
with session.transaction(TransactionType.WRITE) as tx:
write_predictions_to_typedb(predicted_links, tx)
# Now we can get the confusion matrix from querying TypeDB! Note that this includes training and validation
# examples, but serves as a demo for seeing the predictions made.
with session.transaction(TransactionType.READ) as tx:
# Also try these queries in TypeDB Studio omitting "count;" to visualise the predicted relations
tp = tx.query().match_aggregate("match $p isa person; $d isa disease; ($p, $d) isa diagnosis; "
"($p, $d) isa predicted-diagnosis; count;").get().as_int()
tn = tx.query().match_aggregate("match $p isa person; $d isa disease; not{($p, $d) isa diagnosis;}; "
"not{($p, $d) isa predicted-diagnosis;}; count;").get().as_int()
fp = tx.query().match_aggregate("match $p isa person; $d isa disease; not{($p, $d) isa diagnosis;}; "
"($p, $d) isa predicted-diagnosis; count;").get().as_int()
fn = tx.query().match_aggregate("match $p isa person; $d isa disease; ($p, $d) isa diagnosis; "
"not{($p, $d) isa predicted-diagnosis;}; count;").get().as_int()
print("Confusion matrix")
print(f"{tp} {fn}\n{fp} {tn}")
session.close()
client.close()
return train_results[0], test_results[0]
def create_database(client, database):
if client.databases().contains(database):
raise ValueError(
f"There is already a database present with the name {database}. The Diagnosis example expects a clean DB. "
f"Please delete the {database} database, or use another database name")
client.databases().create(database)
def build_queries(subgraph_id: int) -> List[Query]:
"""
Creates a tuple of Query objects that contain the information needed to convert query answers into NetworkX graphs.
Args:
subgraph_id: A uniquely identifiable id used to anchor the results of the queries to a specific subgraph,
designed so that the user can easily query for segmented subgraphs to be used as batches.
Returns:
List of Query
"""
assert subgraph_id == 0 # In this example the graph is small so we don't use any subgraphs
# === Hereditary Feature ===
hereditary_query = inspect.cleandoc(f'''match
$p isa person;
$par isa parent;
$ps(child: $p, parent: $par) isa parentship;
$diag(patient:$par, diagnosed-disease: $d) isa familial-diagnosis;
$d isa disease, has name $n;
''')
vars = p, par, ps, d, diag, n = 'p', 'par', 'ps', 'd', 'diag', 'n'
hereditary_query_graph = (QueryGraph()
.add_vars(vars)
.add_role_edge(ps, p, 'child')
.add_role_edge(ps, par, 'parent')
.add_role_edge(diag, par, 'patient')
.add_role_edge(diag, d, 'diagnosed-disease')
.add_has_edge(d, n))
# === Consumption Feature ===
consumption_query = inspect.cleandoc(f'''match
$p isa person;
$s isa substance, has name $n;
$c(consumer: $p, consumed-substance: $s) isa consumption,
has units-per-week $u;''')
vars = p, s, n, c, u = 'p', 's', 'n', 'c', 'u'
consumption_query_graph = (QueryGraph()
.add_vars(vars)
.add_has_edge(s, n)
.add_role_edge(c, p, 'consumer')
.add_role_edge(c, s, 'consumed-substance')
.add_has_edge(c, u))
# === Age Feature ===
person_age_query = inspect.cleandoc(f'''match
$p isa person, has age $a;
''')
vars = p, a = 'p', 'a'
person_age_query_graph = (QueryGraph()
.add_vars(vars)
.add_has_edge(p, a))
# === Risk Factors Feature ===
risk_factor_query = inspect.cleandoc(f'''match
$d isa disease;
$p isa person;
$r(person-at-risk: $p, risked-disease: $d) isa risk-factor;
''')
vars = p, d, r = 'p', 'd', 'r'
risk_factor_query_graph = (QueryGraph()
.add_vars(vars)
.add_role_edge(r, p, 'person-at-risk')
.add_role_edge(r, d, 'risked-disease'))
# === Symptom ===
vars = p, s, sn, d, dn, sp, sev, c = 'p', 's', 'sn', 'd', 'dn', 'sp', 'sev', 'c'
symptom_query = inspect.cleandoc(f'''match
$p isa person;
$s isa symptom, has name $sn;
$d isa disease, has name $dn;
$sp(presented-symptom: $s, symptomatic-patient: $p) isa symptom-presentation, has severity $sev;
$c(cause: $d, effect: $s) isa causality;
''')
symptom_query_graph = (QueryGraph()
.add_vars(vars)
.add_has_edge(s, sn)
.add_has_edge(d, dn)
.add_role_edge(sp, s, 'presented-symptom')
.add_has_edge(sp, sev)
.add_role_edge(sp, p, 'symptomatic-patient')
.add_role_edge(c, s, 'effect')
.add_role_edge(c, d, 'cause'))
# === Diagnosis ===
diag, d, p, dn = 'diag', 'd', 'p', 'dn'
diagnosis_query = inspect.cleandoc(f'''match
$p isa person;
$d isa disease, has name $dn;
$diag(patient: $p, diagnosed-disease: $d) isa diagnosis;
''')
diagnosis_query_graph = (QueryGraph()
.add_vars([diag])
.add_vars([d, p, dn])
.add_role_edge(diag, d, 'diagnosed-disease')
.add_role_edge(diag, p, 'patient'))
return [
Query(symptom_query_graph, symptom_query),
Query(diagnosis_query_graph, diagnosis_query),
Query(risk_factor_query_graph, risk_factor_query),
Query(person_age_query_graph, person_age_query),
Query(consumption_query_graph, consumption_query),
Query(hereditary_query_graph, hereditary_query)
]
def write_predictions_to_typedb(predicted_links, tx):
"""
Take predictions from the ML model, and insert representations of those predictions back into the graph.
Args:
predicted_links: pairs of concepts that are predicted links
tx: TypeDB write transaction to use
Returns: None
"""
for predicted_link in predicted_links:
person = predicted_link['person']
disease = predicted_link['disease']
query = (f'match '
f'$p iid {person.iid}; '
f'$d iid {disease.iid}; '
f'insert '
f'$pd(patient: $p, diagnosed-disease: $d) isa predicted-diagnosis;')
tx.query().insert(query)
tx.commit()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Just an example",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--graphs", help="num graphs", default=200)
parser.add_argument("typedb", help="TypeDB location")
args = parser.parse_args()
cwd = os.getcwd()
diagnosis_example(args.typedb, args.graphs,
database=DATABASE,
address=ADDRESS,
schema_file_path=cwd + '/' + "examples/diagnosis/dataset/schema.tql",
seed_data_file_path=cwd + '/' + "examples/diagnosis/dataset/seed_data.tql")