-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRunSet.py
869 lines (769 loc) · 46.2 KB
/
RunSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
### Ulrike Hager, Apr 2010 ###
from __future__ import division
from math import sqrt, isnan, exp
"""limits from Feldman&Cousins paper on low signals, use for sets with 15 or fewer events"""
lowStatLimits = ((0,1.29),(0.37,2.75),(0.74,4.25),(1.10,5.30),(2.34,6.78),(2.75,7.81),(3.82,9.28),(4.25,10.30),(5.30,11.32),(6.33,12.79),(6.78,13.81),(7.81,14.82),(8.83,16.29),(9.28,17.30),(10.30,18.32),(11.32,19.32))
class RunSettings:
"""Some values needed both for Set and Run, which are derived.
Just to avoid having the code for the initialisation of those values twice."""
def __init__(self):
self.eBeam = [0,0]
"""Beam energy before and after the target in keV/u."""
self.pTarget = 0
"""target pressure in torr"""
self.Ecm = [0,0]
""" Centre-of-mass energy at target centre in MeV."""
self.tarTrans = [1,0]
"""Target transmission and uncertainty."""
self.sepTrans = [1,0]
"""Separator transmission and uncertainty."""
self.sb0Tot = [0,0]
self.sb1Tot = [0,0]
self.R = [0,0,0]
"""SB0 vs FC4 normalisation factor and statistic and systematic uncertainties."""
self.R1 = [0,0,0]
"""SB1 vs FC4 normalisation factor and uncertainty."""
self.dPressure = 2
"""Uncertainties of the target pressure in percent."""
self.dEnergy = 1
"""Uncertainty of the beam energy in keV/u."""
self.dFc4 = 3
"""FC4 reading uncertainty, in percent of the value
Systematic uncertain"""
self.hiLt = [1,0]
"""heavy ion life time and its uncertainty."""
self.CSF = [1,0]
"""Charge state fraction of recoils and uncertainty."""
self.mcpTrans = [0.95**2*0.98**3,0]
self.mcpEff = [0.8,0.1]
def calc_Ecm(self,massProj,massTarg):
"""Calculate the cm energy.
\'massProj\' and \'massTarg\' are the projectile and target mass in amu, respectively."""
self.Ecm[0] = ( (self.eBeam[0] + self.eBeam[1])/2.0 ) * massProj
self.Ecm[0] = self.Ecm[0]/1000.0 * massTarg/(massTarg+massProj)
self.Ecm[1] = sqrt(2 * (self.dEnergy**2))/2.0
self.Ecm[1] = self.Ecm[1]/1000.0 * massTarg/(massTarg+massProj)
class Set(RunSettings):
"""Set of runs with same incoming beam energy and target pressure."""
def __init__(self):
RunSettings.__init__(self)
self.runNumber = []
self.runString = ''
"""A more readable list of the runs in the set"""
self.pTargetList = []
self.hiLtList = []
self.geantTrans = [0.97,0.03]
self.geantBGO = [0.6,0.1]
self.recoilEvents = [0,0]
"""Observed single and coincidence events."""
self.reacYield = [[0,0,0],[0,0,0]]
"""Yield for singles and coincidences with uncertainties.
Statistical and systematic uncertainty separately"""
self.reacSFactor = [[0,0,0],[0,0,0]]
"""Non-resonant S-factor for singles and coincidences with uncertainties in keVb.
Statistical and systematic uncertainty separately"""
self.reacSigma = [[0,0,0],[0,0,0]]
"""Non-resonant cross-setion for singles and coincidences with uncertainties in nbarn.
Statistical and systematic uncertainty separately"""
self.reacWg = [[0,0,0],[0,0,0]]
"""OmegaGamma for singles and coincidences with uncertainties."""
self.RList = [[0,0,0]]
"""Normalisation factors from runs."""
self.R1List = [[0,0,0]]
"""Normalisation factors from runs using SB1.
Only used for elastics, not in yield calculation"""
self.IoverN = [0,0,0]
"""Particles on FC4 over elastics on SB0 at the beginning and end of run with uncertainties.
Not Rutherford corrected."""
self.IoverN1 = [0,0,0]
"""Particles on FC4 over elastics on SB1 at the beginning and end of run with uncertainties.
Not Rutherford corrected."""
self.IoNList =[[0,0,0]]
self.IoN1List =[[0,0,0]]
self.beamInTarget = [0,0,0]
"""Using the beam that made it into the target, i.e. without multiplying with target transmission.
Statistic and systematic uncertainty separately"""
self.totTrans = [[0,0,0],[0,0,0]]
"""Total separator efficiency singles, coincidences with uncertainties
Statistic and systematic uncertainty separately"""
self.targetDensity = [0,3]
"""Number density In 1/cm^3
Second value is uncertainty in % of value.
This is replaced by the calculated value in calc_target_density"""
self.stoppingPower = [0,0,0]
"""Stopping power in kev/(ug*cm^2).
Statistical and systematic uncertainty separately"""
self._upperLimit = [0,0]
"""Upper limit switch: 0 for normal calculation.
1 for cases where the Feldman&Cousins limits will be used,
2 for cases with 0 events, where only an upper limit (again based on Feldman&Cousins) is used.
Two values for singles and coincidences"""
def average_list(self, aList):
"""Returns the average of all entries in aList of values and uncertainties.
If entries are nan, they are removed from the list"""
nX = 0
result = 0
dResult = 0
dRes2 = 0
chi=0
for x,dx,dx2 in aList[:]:
# if (isnan(r) or r==0):
if (isnan(x)):
aList.remove([x,dx,dx2])
continue
result += x
dResult += dx**2
nX += 1
if (dRes2 == 0):
dRes2 = dx2/x
try:
result /= nX
dResult = sqrt(dResult)/nX
dRes2 = result * dRes2
except ZeroDivisionError:
result = dResult = dRes2= float('nan')
return [result,dResult,dRes2]
for x,dx,dx2 in aList[:]:
chi += (x-result)**2/dx**2
if chi > 1.0:
dResult *= sqrt(chi)
return [result,dResult,dRes2]
def calc_averages(self):
"""Calculate average target pressure and HI lt."""
self.pTarget = 0
for x in self.pTargetList:
self.pTarget += x/len(self.pTargetList)
self.hiLt[0] = 0
uncert = 0
for x,dx in self.hiLtList:
self.hiLt[0] += x/len(self.hiLtList)
uncert += dx**2
self.hiLt[1] = sqrt(uncert)/len(self.hiLtList)
def calc_beam_in_target(self):
"""Calculates the beam in the target.
The target transmission is not corrected for;
it is assumed that the target transmission is largely determined by the entrance apperture,
so what doesn't make it through the target doesn't make it into the target and cannot react."""
self.beamInTarget[0] = self.sb0Tot[0] * (self.eBeam[0]**2)/self.pTarget * self.R[0]
err1 = ( (self.eBeam[0]**2)/self.pTarget * self.R[0])**2 * self.sb0Tot[1]**2
# err2 = (self.sb0Tot[0] * 2 * (self.eBeam[0])/self.pTarget * self.R[0])**2 * self.dEnergy**2
#err3 = (self.sb0Tot[0] * (self.eBeam[0]**2)/(self.pTarget**2) * self.R[0])**2 * self.dPressure**2
err4 = (self.sb0Tot[0] * (self.eBeam[0]**2)/(self.pTarget**2))**2 * self.R[1]**2
self.beamInTarget[1] = sqrt(err1 + err4)
systUncert = sqrt( (self.dFc4/100.0)**2 + (self.tarTrans[1]/self.tarTrans[0])**2 + (self.R[2]/self.R[0])**2 + 2*(self.dEnergy/self.eBeam[0])**2 + (self.dPressure/100.0)**2)
self.beamInTarget[2] = self.beamInTarget[0]*systUncert
def calc_beam_in_target_sb1(self):
"""Calculates the beam in the target.
The target transmission is not corrected for;
it is assumed that the target transmission is largely determined by the entrance apperture,
so what doesn't make it through the target doesn't make it into the target and cannot react."""
self.beamInTarget[0] = self.sb1Tot[0] * (self.eBeam[0]**2)/self.pTarget * self.R1[0]
err1 = ( (self.eBeam[0]**2)/self.pTarget * self.R1[0])**2 * self.sb1Tot[1]**2
# err2 = (self.sb0Tot[0] * 2 * (self.eBeam[0])/self.pTarget * self.R[0])**2 * self.dEnergy**2
#err3 = (self.sb0Tot[0] * (self.eBeam[0]**2)/(self.pTarget**2) * self.R[0])**2 * self.dPressure**2
err4 = (self.sb1Tot[0] * (self.eBeam[0]**2)/(self.pTarget**2))**2 * self.R1[1]**2
self.beamInTarget[1] = sqrt(err1 + err4)
systUncert = sqrt( (self.dFc4/100.0)**2 + (self.tarTrans[1]/self.tarTrans[0])**2 + (self.R1[2]/self.R1[0])**2 + 2*(self.dEnergy/self.eBeam[0])**2 + (self.dPressure/100.0)**2)
self.beamInTarget[2] = self.beamInTarget[0]*systUncert
def calc_elastics(self, maxDev=0.4):
"""Calculate elastics.
Calculates from values for individual runs: normalisation factor R (SB0) and R1 (SB1), FC4/SB0, and FC4/SB1.
\'maxDev\' is how much an individual value may deviate from the average (in ave * maxDev) before being skipped. """
self.calc_R(maxDev)
for aList in [self.R1List, self.IoNList, self.IoN1List]:
self.remove_zero_from_list(aList)
self.remove_outliers_from_list(aList,3)
self.R1 = self.calc_value_from_list(self.R1List,maxDev)
self.IoverN = self.calc_value_from_list(self.IoNList,maxDev)
self.IoverN1 = self.calc_value_from_list(self.IoN1List,maxDev)
def calc_R(self,maxDev=0.4):
"""Calculate normalisation factor R from all run Rs.
\'maxDev\' is how much an individual R may deviate from Rave (in Rave * maxDev) before being skipped."""
self.remove_zero_from_list(self.RList)
self.remove_outliers_from_list(self.RList,3)
self.R = self.calc_value_from_list(self.RList,maxDev)
def calc_R1(self,maxDev=0.4):
"""Calculate normalisation factor R based on SB1 from all run Rs.
\'maxDev\' is how much an individual R may deviate from Rave (in Rave * maxDev) before being skipped."""
self.remove_zero_from_list(self.R1List)
self.remove_outliers_from_list(self.R1List,3)
self.R1 = self.calc_value_from_list(self.R1List,maxDev)
def calc_Sfactor(self, projZ, targZ, reducedMass):
"""Calculate the S-factor at the cm energy.
calc_sigma must have been called first."""
twoPiEta = 31.29 *projZ*targZ * sqrt(reducedMass/(self.Ecm[0]*1000))
err1 = - 31.29 * projZ*targZ * sqrt(reducedMass) * 1/2.0 * ( (self.Ecm[0]*1000)**(-1.5)) * self.Ecm[1] * 1000
for i in range(2):
self.reacSFactor[i][0] = self.reacSigma[i][0]/1e9 * self.Ecm[0] * 1000 * exp(twoPiEta )
err2 = ( 1/1e9 * self.Ecm[0] * 1000 * exp(twoPiEta) )**2 * self.reacSigma[i][1]**2
# err3 = ( self.reacSigma[i][0]/1e9 * 1000 * exp(twoPiEta) )**2 * self.Ecm[1]**2
# err4 = (self.reacSigma[i][0]/1e9 *1000 * self.Ecm[0] * exp(twoPiEta) )**2 * err1**2
if isnan(err2): err2 = 0
self.reacSFactor[i][1] = sqrt( err2 )
if self.reacSFactor[i][0] ==0:
systUncert = sqrt( (self.Ecm[1]/self.Ecm[0])**2 + (err1)**2 + (self.reacSigma[i][2]/self.reacSigma[i][1])**2)
self.reacSFactor[i][2] = self.reacSFactor[i][1] * systUncert
else:
systUncert = sqrt( (self.Ecm[1]/self.Ecm[0])**2 + (err1)**2 + (self.reacSigma[i][2]/self.reacSigma[i][0])**2)
self.reacSFactor[i][2] = self.reacSFactor[i][0] * systUncert
# if self._upperLimit[i] == 2:
# self.reacSFactor[i][0] += self.reacSFactor[i][1]
# self.reacSFactor[i][1] = float('nan')
def calc_sigma(self, targetLength=[12.3,0.1]):
"""Calculate non-resonant cross section for singles and coincidences
\'targetLength\' is in cm"""
for i in range(2):
self.reacSigma[i][0] = self.reacYield[i][0]/(self.targetDensity[0] * targetLength[0])*1e9*1e24
err1 = (1/(self.targetDensity[0] * targetLength[0]))**2 * self.reacYield[i][1]**2
# err2 = (self.reacYield[i][0]/(self.targetDensity[0]**2 * targetLength[0]))**2 * self.targetDensity[1]**2
# err3 = (self.reacYield[i][0]/(self.targetDensity[0] * targetLength[0]**2))**2 * targetLength[1]**2
if isnan(err1): err1 = 0
self.reacSigma[i][1] = sqrt(err1 ) * 1e9 * 1e24
if (self.reacYield[i][0] == 0):
self.reacSigma[i][2] = self.reacSigma[i][1] *sqrt((self.reacYield[i][2]/self.reacYield[i][1])**2 + (targetLength[1]/targetLength[0])**2 + (self.targetDensity[1]/self.targetDensity[0])**2)
else:
self.reacSigma[i][2] = self.reacSigma[i][0] * sqrt((self.reacYield[i][2]/self.reacYield[i][0])**2 + (targetLength[1]/targetLength[0])**2 + (self.targetDensity[1]/self.targetDensity[0])**2)
# if self._upperLimit[i] == 2:
# self.reacSigma[i][0] += self.reacSigma[i][1]
# self.reacSigma[i][1] = float('nan')
def calc_stopping_power(self,projA, targetMassKg, targetLength=[12.3,0.1]):
"""Calculate the stopping power based on beam energy before and after the target.
Calculates first the target density in ug/cm^2, then the stopping power in keV/(ug/cm^2).
\'projA\' is the beam mass number, \'targetMassKg\' is the mass in kg, \'targetLength\' is in cm.
All uncertainties assumed systematic, so stoppingPower[1] is 0, and stoppingPower[2] is the systematic uncertainty."""
density = self.targetDensity[0] * targetMassKg * 1e9 * targetLength[0]
err1 = (targetMassKg * 1e9 * targetLength[0])**2 * self.targetDensity[1]**2
err2 = (self.targetDensity[0] * targetMassKg * 1e9)**2 * targetLength[1]**2
dDensity = sqrt(err1 + err2)
# dDensSys = sqrt( (targetLength[1]/targetLength[0])**2 + (self.targetDensity[1]/self.targetDensity[0])**2)
try:
self.stoppingPower[0] = (self.eBeam[0]-self.eBeam[1]) * float(projA)/density
except ZeroDivisionError:
print "could not calculate stopping power (target density is 0?)"
return
else:
err1 = ((float(projA)/density)**2 * self.dEnergy**2)
err2 = ((self.eBeam[0]-self.eBeam[1]) * float(projA)/density**2)**2 * dDensity**2
self.stoppingPower[1] = 0
# systUncert = sqrt( (dDensSys/density)**2 + (self.dEnergy/self.eBeam[0])**2 + (self.dEnergy/self.eBeam[1])**2)
# self.stoppingPower[2] = self.stoppingPower[0] * systUncert
self.stoppingPower[2] = sqrt(err1 + err1 + err2)
def calc_target_density(self, nuTarget=1):
"""Calculate target density in 1/cm^3.
nuTarget is the number of atoms per molecule, i.e. 1 for helium and 2 for hydrogen.
Uncertainty is systematic."""
self.targetDensity[0] = 9.66e18 * nuTarget * self.pTarget/300.0
err1 = (9.66e18 * nuTarget/300.0)**2 * (self.dPressure/100.0*self.pTarget)**2
self.targetDensity[1] = sqrt(err1)
## self.targetDensity[1] = self.targetDensity[1]/100.0 * self.targetDensity[0]
def calc_transmission(self):
"""Calculate the separator efficiency for singles and coincidences.
\'mcpEff\' is a tuple containing MCP efficiency and uncertainty."""
self.totTrans[0][0] = self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.hiLt[0] * self.geantTrans[0]
# err1 = (self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.hiLt[0] * self.geantTrans[0])**2 * self.CSF[1]**2
err4 = (self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.geantTrans[0])**2 * self.hiLt[1]**2
# err5 = (self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.hiLt[0] * self.geantTrans[0])**2 * self.sepTrans[1]**2
# err6 = (self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.hiLt[0])**2 * self.geantTrans[1]**2
self.totTrans[0][1] = sqrt( err4 )
systUncert = sqrt((self.mcpEff[1]/self.mcpEff[0])**2 + (self.mcpTrans[1]/self.mcpTrans[0])**2 + (self.sepTrans[1]/self.sepTrans[0])**2 +(self.geantTrans[1]/self.geantTrans[0])**2 + (self.CSF[1]/self.CSF[0])**2 )
self.totTrans[0][2] = self.totTrans[0][0] * systUncert
self.totTrans[1][0] = self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.hiLt[0] * self.geantBGO[0] * self.geantTrans[0]
# err1 = (self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.hiLt[0] * self.geantBGO[0] * self.geantTrans[0])**2 * self.CSF[1]**2
# err4 = (self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.hiLt[0] * self.geantBGO[0] * self.geantTrans[0])**2 * self.sepTrans[1]**2
err5 = (self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.geantBGO[0] * self.geantTrans[0])**2 * self.hiLt[1]**2
# err7 = (self.CSF[0] * self.mcpTrans[0] * self.mcpEff[0] * self.sepTrans[0] * self.hiLt[0] * self.geantBGO[0])**2 * self.geantTrans[1]**2
self.totTrans[1][1] = sqrt(err5)
systUncert = sqrt((self.mcpEff[1]/self.mcpEff[0])**2 + (self.mcpTrans[1]/self.mcpTrans[0])**2 + (self.sepTrans[1]/self.sepTrans[0])**2 +(self.geantTrans[1]/self.geantTrans[0])**2 + (self.CSF[1]/self.CSF[0])**2 + (self.geantBGO[1]/self.geantBGO[0])**2)
self.totTrans[1][2] = self.totTrans[1][0] * systUncert
def calc_value_from_list(self,list,maxDev=0.4):
"""Calculate a value with uncertainty from a list of values and uncertainties
\'maxDev\' is how much an individual value may deviate from the average (in ave * maxDev) before being skipped. """
## if self.runString == '':
## self.runString = self.runs_to_string()
## print self.runString
## print list
## print "------------------------------------------------------------"
result = [0,0,0]
result = self.average_list(list);
for x,dx,dx2 in list[:]:
if abs(x-result[0])>result[0]*maxDev: list.remove([x,dx,dx2])
result = self.average_list(list)
## print list
## print "*****************" + str(result) + "**************************"
return result;
def calc_wg(self, projA, targetA, stoppingFactor):
"""Calculate resonant omega-gamma.
\'projA\' and \'targetA\' are the projectile and target mass numbers.
\'stoppingFactor\' is the conversion factor for the stopping power from keV/(ug/cm^2) to eV/(10^15/cm^2)."""
if stoppingFactor == 0: return 1
reducedMass = (projA*targetA)/float(projA+targetA)
factor = 1/(4125.5e-9) * reducedMass * targetA/float(projA+targetA)
for i in range(2):
self.reacWg[i][0] = factor * self.Ecm[0]*1000 * self.stoppingPower[0] * stoppingFactor * self.reacYield[i][0]
# err1 = (factor * self.stoppingPower[0] * stoppingFactor * self.reacYield[i][0])**2 * (self.Ecm[1]*1000)**2
err2 = (factor * self.Ecm[0]*1000 * self.reacYield[i][0])**2 * (stoppingFactor * self.stoppingPower[1])**2
err3 = (factor * self.Ecm[0]*1000 * self.stoppingPower[0] * stoppingFactor)**2 * self.reacYield[i][1]**2
if (self._upperLimit[i] == 2 and isnan(err3)): err3 = 0
self.reacWg[i][1] = sqrt(err2 + err3)
if self._upperLimit[i] == 2:
systUncert = sqrt( (self.Ecm[1]/self.Ecm[0])**2 + (self.reacYield[i][2]/self.reacYield[i][1])**2 + (self.stoppingPower[2]/self.stoppingPower[0])**2)
self.reacWg[i][2] = self.reacWg[i][1] * systUncert
else:
systUncert = sqrt( (self.Ecm[1]/self.Ecm[0])**2 + (self.reacYield[i][2]/self.reacYield[i][0])**2 + (self.stoppingPower[2]/self.stoppingPower[0])**2)
self.reacWg[i][2] = self.reacWg[i][0] * systUncert
return 0
def calc_yield(self):
"""Calculate yield for singles and coincidences"""
for i in range(2):
recoilL = []
value = []
uncert = []
if self._upperLimit[i] == 2:
recoilL.append([lowStatLimits[0][1], 0])
elif self._upperLimit[i] == 1:
for j in range(2):
recoilL.append([lowStatLimits[self.recoilEvents[i]][j], 0])
else: recoilL.append([self.recoilEvents[i],self.recoilEvents[i]])
for [recoils, dRecoils] in recoilL:
value.append(recoils/(self.totTrans[i][0]*self.beamInTarget[0]))
err1 = (1/(self.totTrans[i][0]*self.beamInTarget[0]))**2 * dRecoils
# err2 = (recoils/((self.totTrans[i][0]**2) * self.beamInTarget[0]))**2 * self.totTrans[i][1]**2
# err3 = (recoils/(self.totTrans[i][0]*self.beamInTarget[0]**2))**2 * self.beamInTarget[1]**2
uncert.append(sqrt(err1 ))
if self._upperLimit[i] == 2:
self.reacYield[i][0] = 0
self.reacYield[i][1] = sqrt( value[0]**2 + uncert[0]**2 )
# self.reacYield[i][1] = float('nan')
elif self._upperLimit[i] == 1:
limit = []
for j in range(len(value)):
limit.append(value[j] + (-1)**(j+1) * uncert[j])
self.reacYield[i][0] = (limit[0] + limit[1])/2
self.reacYield[i][1] = (limit[1] - limit[0])/2
else:
self.reacYield[i][0] = value[0]
self.reacYield[i][1] = uncert[0]
uncertSys = sqrt( (self.totTrans[i][2]/self.totTrans[i][0])**2 + (self.beamInTarget[2]/self.beamInTarget[0])**2 )
if self.reacYield[i][0] ==0:
self.reacYield[i][2] = uncertSys * self.reacYield[i][1]
else:
self.reacYield[i][2] = self.reacYield[i][0]*uncertSys
def get_geant_data(self,line):
"""Get GEANT data from \'line\'.
Format:
E_in pTar transm +/- BGOeff +/- """
dataList = line.split()
self.geantTrans = [float(dataList[2]),float(dataList[3])]
self.geantBGO = [float(dataList[4]),float(dataList[5])]
def get_recoil_data(self,line,upperLimitSwitch=True):
"""Get recoil data from \'line\'.
Adds events to recoilEvents.
Format
Ein pTar singles coincidences
\'upperLimitSwitch\' determines whether (True) of not (False) the limits by Feldman & Cousins will be used for low numbers"""
dataList = line.split()
self.recoilEvents[0] += int(dataList[2])
self.recoilEvents[1] += int(dataList[3])
if upperLimitSwitch:
for i,events in enumerate(self.recoilEvents):
if events == 0: self._upperLimit[i] = 2
elif events < len(lowStatLimits): self._upperLimit[i] = 1
else: self._upperLimit[i] = 0
def get_normalisation(self, format=0):
"""Returns a string representation of the set
If format=1 the titles are returned, used as the first line in output files."""
if format == 1:
return "#run\tEin\tEout\tEcm\t+/-\tpressure\tTargDensity\t+/-\tstopping\t+/-stat\t+/-sys\ttarTrans\t+/-\tsepTrans\t+/-\thiLt\t+/-\tCSF\t+/-\tMCPeff\t+/-\tgeantTransm\t+/-\tgeantBGOeff\t+/-\tSB0tot\t+/-\tSB1tot\t+/-\tR\t+/-stat\t+/-sys\tbeam\t+/-stat\t+/-sys\tR1\t+/-stat\t+/-sys\tFC4/SB0\t+/-stat\t+/-sys\tFC4/SB1\t+/-stat\t+/-sys\tsingles\tcoincidences\n"
if self.runString == '':
self.runString = self.runs_to_string()
result = self.runString + "\t"
result += "\t".join(map(str, self.eBeam)) + "\t"
result += "\t".join(map(str, self.Ecm)) + "\t"
result += str(self.pTarget) + "\t"
result += "\t".join(map(str, self.targetDensity)) + "\t"
result += "\t".join(map(str, self.stoppingPower)) + "\t"
result += "\t".join(map(str, self.tarTrans)) + "\t"
result += "\t".join(map(str, self.sepTrans)) + "\t"
result += "\t".join(map(str, self.hiLt)) + "\t"
result += "\t".join(map(str, self.CSF)) + "\t"
result += "\t".join(map(str, self.mcpEff)) + "\t"
result += "\t".join(map(str, self.geantTrans)) + "\t"
result += "\t".join(map(str, self.geantBGO)) + "\t"
result += "\t".join(map(str, self.sb0Tot)) + "\t"
result += "\t".join(map(str, self.sb1Tot)) + "\t"
result += "\t".join(map(str, self.R)) + "\t"
result += "\t".join(map(str, self.beamInTarget)) + "\t"
result += "\t".join(map(str, self.R1)) + "\t"
result += "\t".join(map(str, self.IoverN)) + "\t"
result += "\t".join(map(str, self.IoverN1)) + "\t"
result += "\t".join(map(str, self.recoilEvents)) + "\n"
return result
def make_set_from_run(self,run):
"""Create a new set taking the relevant data from run. """
self.runNumber.append(run.runNumber)
self.Ecm = run.Ecm
self.eBeam = run.eBeam
self.pTargetList.append(run.pTarget)
self.pTarget = run.pTarget
self.tarTrans = run.tarTrans
self.sepTrans = run.sepTrans
self.sb0Tot[0] += run.sb0Tot[0]
self.sb0Tot[1] = sqrt(self.sb0Tot[0])
self.sb1Tot[0] += run.sb1Tot[0]
self.sb1Tot[1] = sqrt(self.sb1Tot[0])
self.hiLtList.append(run.hiLt)
self.CSF = run.CSF
self.RList.append(run.R[0])
self.RList.append(run.R[1])
self.R1List.append(run.R1[0])
self.R1List.append(run.R1[1])
self.IoNList.append(run.IoverN[0])
self.IoNList.append(run.IoverN[1])
self.IoN1List.append(run.IoverN1[0])
self.IoN1List.append(run.IoverN1[1])
return self
def make_set_from_set_step2(self,line,upperLimitSwitch=True):
"""Get set data from line.
This function is used to read in a file with set data written by \'get_normalisation\'. This way, the normalisation can be done up to that point, the output file edited, and then read back in to continue with the modified sets.
Format:
Runs Ein Eout Ecm +/- pressure TargDensity +/- stopping +/- tarTrans +/- sepTrans +/- HI-lt +/- CSF +/- MCPeff +/- geantTransm +/- geantBGOeff +/- SB0tot +/- SB1tot +/- R +/- beam +/- ( R1 +/- FC4/SB0 +/- FC4/SB1 +/- ( singles coincidences)) """
lList = line.split()
self.runString = lList[0]
self.eBeam = [float(lList[1]),float(lList[2])]
self.Ecm = [float(lList[3]),float(lList[4])]
self.pTarget = float(lList[5])
self.targetDensity = [float(lList[6]),float(lList[7])]
self.stoppingPower = [float(lList[8]),float(lList[9])]
self.tarTrans = [float(lList[10]),float(lList[11])]
self.sepTrans = [float(lList[12]),float(lList[13])]
self.hiLt = [float(lList[14]),float(lList[15])]
self.CSF = [float(lList[16]),float(lList[17])]
self.mcpEff = [float(lList[18]),float(lList[19])]
self.geantTrans = [float(lList[20]),float(lList[21])]
self.geantBGO = [float(lList[22]),float(lList[23])]
self.sb0Tot = [float(lList[24]),float(lList[25])]
self.sb1Tot = [float(lList[26]),float(lList[27])]
self.R = [float(lList[28]),float(lList[29])]
self.beamInTarget = [float(lList[30]),float(lList[31])]
if (len(lList)==38 or len(lList)==40):
self.R1 = [float(lList[32]),float(lList[33])]
self.IoverN = [float(lList[34]),float(lList[35])]
self.IoverN1 = [float(lList[36]),float(lList[37])]
if (len(lList)==40):
self.recoilEvents = [int(lList[38]),int(lList[39])]
if upperLimitSwitch:
for i,events in enumerate(self.recoilEvents):
if events == 0: self._upperLimit[i] = 2
elif events < len(lowStatLimits): self._upperLimit[i] = 1
else: self._upperLimit[i] = 0
return self
def remove_outliers_from_list(self,list,limit):
"""Removes entries from a list [[0,0],[x,dx]] that are more than limit x other value.
Requires list of at least 3 elements."""
if (len(list)>2):
for i in range(len(list)):
if (i==0):
if (list[i][0]> limit * list[i+1][0] and list[i][0]> limit * list[i+2][0]):
list.pop(i)
break
elif i<len(list)-1:
if (list[i][0]> limit * list[i+1][0] and list[i][0]> limit * list[i-2][0]):
list.pop(i)
break
elif i==len(list)-1:
if (list[i][0]> limit * list[i-1][0] and list[i][0]> limit * list[i-2][0]):
list.pop(i)
break
else:
return
self.remove_outliers_from_list(list,limit)
def remove_zero_from_list(self,list):
"""Removes entries that are 0 from a list [[0,0],[x,dx]]"""
for x,dx,dx2 in list[:]:
if (isnan(x) or x==0):
list.remove([x,dx,dx2])
def runs_to_string(self):
"""Returns a more readable string of the run numbers."""
result = ""
i = 0
if len(self.runNumber) == 1: return str(self.runNumber[0])
while i < len(self.runNumber)-1:
sep = ","
j = i+1
check = 0
while j < len(self.runNumber):
if self.runNumber[j]-self.runNumber[i] == j-i:
sep = "-"
j += 1
check = 1
else: break
j = j - check
result += str(self.runNumber[i]) +sep + str(self.runNumber[j])
i = j + 1
if i < len(self.runNumber)-1: result += ","
return result
def summarise_results(self,format=0):
"""Returns a string representation of the results for the set.
If format=1 the titles are returned, used as the first line in output files."""
if format == 1:
return "#run\tEin\tEout\tEcm\t+/-\tpressure\tR\t+/-stat\t+/-sys\tbeam\t+/-stat\t+/-sys\ttransm(single)\t+/-stat\t+/-sys\ttransm(coinc)\t+/-stat\t+/-sys\tsingles\tcoincidences\tyield(single)\t+/-stat\t+/-sys\tyield(coinc)\t+/-stat\t+/-sys\tsigma(single)\t+/-stat\t+/-sys\tsigma(coinc)\t+/-stat\t+/-sys\twg(singles)\t+/-stat\t+/-sys\twg(coinc)\t+/-stat\t+/-sys\tSfactor(singles)\t+/-stat\t+/-sys\tSfactor(coinc)\t+/-stat\t+/-sys\n"
if self.runString == '':
self.runString = self.runs_to_string()
result = self.runString + "\t"
result += "\t".join(map(str, self.eBeam)) + "\t"
result += "\t".join(map(str, self.Ecm)) + "\t"
result += str(self.pTarget) + "\t"
result += "\t".join(map(str, self.R)) + "\t"
result += "\t".join(map(str, self.beamInTarget)) + "\t"
result += "\t".join(map(str, self.totTrans[0])) + "\t"
result += "\t".join(map(str, self.totTrans[1])) + "\t"
result += "\t".join(map(str, self.recoilEvents)) + "\t"
result += "\t".join(map(str, self.reacYield[0])) + "\t"
result += "\t".join(map(str, self.reacYield[1])) + "\t"
result += "\t".join(map(str, self.reacSigma[0])) + "\t"
result += "\t".join(map(str, self.reacSigma[1])) + "\t"
result += "\t".join(map(str, self.reacWg[0])) + "\t"
result += "\t".join(map(str, self.reacWg[1])) + "\t"
result += "\t".join(map(str, self.reacSFactor[0])) + "\t"
result += "\t".join(map(str, self.reacSFactor[1])) + "\n"
return result
class Run(RunSettings):
"""Contains data for a single run."""
def __init__(self):
RunSettings.__init__(self)
self.runNumber = 0
self.fc4 = [0,0]
"""Cup readings before and after the run."""
self.dFc4 = 3
"""FC4 reading uncertainty, in percent of the value"""
self.sb0Start = 0
"""SB0/s at the beginning of the run."""
self.sb0End = 0
"""SB0/s at the end of the run."""
self.sb1Start = 0
"""SB1/s at the beginning of the run."""
self.sb1End = 0
"""SB1/s at the end of the run."""
self.R = [[0,0,0],[0,0,0]]
"""Normalisation factor R (Rutherford corrected) at the beginning and end of run with uncertainties."""
self.R1 = [[0,0,0],[0,0,0]]
"""Normalisation factor R (Rutherford corrected) at the beginning and end of run with uncertainties.
Calculated using SB1, this is just for comparison, R (for SB0) is used for the yield calculations."""
self.IoverN = [[0,0,0],[0,0,0]]
"""Particles on FC4 over elastics on SB0 at the beginning and end of run with uncertainties.
Not Rutherford corrected."""
self.IoverN1 = [[0,0,0],[0,0,0]]
"""Particles on FC4 over elastics on SB1 at the beginning and end of run with uncertainties.
Not Rutherford corrected."""
def calc_IoverN(self):
"""Calculates the individual FC4 current per SB0 for the beginning and the end of the run."""
try:
self.IoverN[0][0] = self.fc4[0]/self.sb0Start[0] * self.tarTrans[0]
err1= err2=err3 = 0
err1 = (1./self.sb0Start[0] * self.tarTrans[0])**2 * (self.fc4[0]*self.dFc4/100.0)**2
err2 = (self.fc4[0]/(self.sb0Start[0]**2) * self.tarTrans[0])**2 * self.sb0Start[1]**2
err3 = (self.fc4[0]/self.sb0Start[0] )**2 * self.tarTrans[1]**2
self.IoverN[0][1] = sqrt(err1 + err2 + err3)
except ZeroDivisionError:
self.IoverN[0][0] = float('nan')
self.IoverN[0][1] = float('nan')
try:
err1 = err2 = err3 = err4 = 0
self.IoverN[1][0] = self.fc4[1]/self.sb0End[0] * self.tarTrans[0]
err1 = (1./self.sb0End[0] * self.tarTrans[0])**2 * (self.fc4[1]*self.dFc4/100.0)**2
err2 = (self.fc4[1]/(self.sb0End[0]**2) * self.tarTrans[0])**2 * self.sb0End[1]**2
err3 = (self.fc4[1]/self.sb0End[0] )**2 * self.tarTrans[1]**2
self.IoverN[1][1] = sqrt(err1 + err2 + err3)
except ZeroDivisionError:
self.IoverN[1][0] = float('nan')
self.IoverN[1][1] = float('nan')
def calc_IoverN1(self):
"""Calculates the individual FC4 current per SB1 for the beginning and the end of the run."""
try:
self.IoverN1[0][0] = self.fc4[0]/self.sb1Start[0] *self.tarTrans[0]
err1= err2=err3 = 0
err1 = (1./self.sb1Start[0] * self.tarTrans[0])**2 * (self.fc4[0]*self.dFc4/100.0)**2
err2 = (self.fc4[0]/(self.sb1Start[0]**2) *self.tarTrans[0])**2 * self.sb1Start[1]**2
err3 = (self.fc4[0]/self.sb1Start[0]) * self.tarTrans[1]**2
self.IoverN1[0][1] = sqrt(err1 + err2 + err3)
except ZeroDivisionError:
self.IoverN1[0][0] = float('nan')
self.IoverN1[0][1] = float('nan')
try:
err1 = err2 = err3 = 0
self.IoverN1[1][0] = self.fc4[1]/self.sb1End[0] *self.tarTrans[0]
err1 = (1./self.sb1End[0] *self.tarTrans[0])**2 * (self.fc4[1]*self.dFc4/100.0)**2
err2 = (self.fc4[1]/(self.sb1End[0]**2) *self.tarTrans[0])**2 * self.sb1End[1]**2
err3 = (self.fc4[1]/self.sb1End[0] )**2 * self.tarTrans[1]**2
self.IoverN1[1][1] = sqrt(err1 + err2 + err3)
except ZeroDivisionError:
self.IoverN1[1][0] = float('nan')
self.IoverN1[1][1] = float('nan')
def calc_R(self):
"""Calculates the individual normalisation factor for the beginning and the end of the run.
Does not contain FC4 uncertainty (systematic!)"""
try:
## print "run", self.runNumber
## print "fc4" , self.fc4[0]
## print "hiLt" , self.hiLt[0]
## print "sb0Start" , self.sb0Start[0]
## print "tarTrans" , self.tarTrans[0]
## print "eBeam" , self.eBeam[0]
self.R[0][0] = self.fc4[0]/self.sb0Start[0] *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2
err1= err2=err3=err4= 0
err1 = (self.fc4[0]/(self.sb0Start[0]**2)*self.tarTrans[0] * self.pTarget/self.eBeam[0]**2)**2 * self.sb0Start[1]**2
# err2 = (self.fc4[0]/self.sb0Start[0] * self.pTarget/self.eBeam[0]**2)**2 * self.tarTrans[1]**2
# err3 = (self.fc4[0]/self.sb0Start[0] *self.tarTrans[0] * 1/self.eBeam[0]**2)**2 * self.dPressure**2
# err4 = (self.fc4[0]/self.sb0Start[0] *self.tarTrans[0] * 2 * self.pTarget/(self.eBeam[0]**3))**2 * self.dEnergy**2
self.R[0][1] = sqrt(err1 )
except ZeroDivisionError:
self.R[0][0] = float('nan')
self.R[0][1] = float('nan')
self.R[0][2] = float('nan')
try:
err1 = err2 = err3 = err4 = err5 = 0
self.R[1][0] = self.fc4[1]/self.sb0End[0] *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2
# err1 = (1./self.sb0End[0] *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2)**2 * (self.fc4[1]*self.dFc4/100.0)**2
err2 = (self.fc4[1]/(self.sb0End[0]**2) *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2)**2 * self.sb0End[1]**2
# err3 = (self.fc4[1]/self.sb0End[0] * self.pTarget/self.eBeam[0]**2)**2 * self.tarTrans[1]**2
# err4 = (self.fc4[1]/self.sb0End[0] *self.tarTrans[0] * 1/self.eBeam[0]**2)**2 * self.dPressure**2
# err5 = (self.fc4[1]/self.sb0End[0] *self.tarTrans[0] * 2* self.pTarget/(self.eBeam[0]**3))**2 * self.dEnergy**2
self.R[1][1] = sqrt(err2 )
except ZeroDivisionError:
self.R[1][0] = float('nan')
self.R[1][1] = float('nan')
systUncert = sqrt( (self.tarTrans[1]/self.tarTrans[0])**2 + (self.dPressure/100.0)**2 + (self.dEnergy/self.eBeam[0])**2 + (self.dFc4/100.0)**2)
self.R[0][2] = self.R[0][0] * systUncert
self.R[1][2] = self.R[1][0] * systUncert
def calc_R1(self):
"""Calculates the individual normalisation factor based on SB1 for the beginning and the end of the run."""
try:
self.R1[0][0] = self.fc4[0]/self.sb1Start[0] *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2
err1= err2=err3=err4=err5 = 0
err1 = (1./self.sb1Start[0] *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2)**2 * (self.fc4[0]*self.dFc4/100.0)**2
err2 = (self.fc4[0]/(self.sb1Start[0]**2) *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2)**2 * self.sb1Start[1]**2
err3 = (self.fc4[0]/self.sb1Start[0] * self.pTarget/self.eBeam[0]**2)**2 * self.tarTrans[1]**2
err4 = (self.fc4[0]/self.sb1Start[0] *self.tarTrans[0] * 1/self.eBeam[0]**2)**2 * (self.dPressure/100.0*self.pTarget)**2
err5 = (self.fc4[0]/self.sb1Start[0] *self.tarTrans[0] * 2 * self.pTarget/(self.eBeam[0]**3))**2 * self.dEnergy**2
self.R1[0][1] = sqrt(err1 + err2 + err3 + err4 + err5)
except ZeroDivisionError:
self.R1[0][0] = float('nan')
self.R1[0][1] = float('nan')
try:
err1 = err2 = err3 = err4 = err5 = 0
self.R1[1][0] = self.fc4[1]/self.sb1End[0] *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2
err1 = (1./self.sb1End[0] *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2)**2 * (self.fc4[1]*self.dFc4/100.0)**2
err2 = (self.fc4[1]/(self.sb1End[0]**2) *self.tarTrans[0] * self.pTarget/self.eBeam[0]**2)**2 * self.sb1End[1]**2
err3 = (self.fc4[1]/self.sb1End[0] * self.pTarget/self.eBeam[0]**2)**2 * self.tarTrans[1]**2
err4 = (self.fc4[1]/self.sb1End[0] *self.tarTrans[0] * 1/self.eBeam[0]**2)**2 * (self.dPressure/100.0*self.pTarget)**2
err5 = (self.fc4[1]/self.sb1End[0] *self.tarTrans[0] * 2* self.pTarget/(self.eBeam[0]**3))**2 * self.dEnergy**2
self.R1[1][1] = sqrt(err1 + err2 + err3 + err4 + err5)
except ZeroDivisionError:
self.R1[1][0] = float('nan')
self.R1[1][1] = float('nan')
def convert_fc4(self,chargeState):
"""Convert cup readings from eA to particles/s.
Requires charge state of incoming beam."""
for i in range(len(self.fc4)):
if self.fc4[i] > 1e-6:
self.fc4[i] = float('nan')
self.fc4[i] = self.fc4[i]/(chargeState*1.602176E-019)
def get_normalisation(self,format=0):
"""Return string of run data
If format=1 the titles are returned, used as the first line in output files."""
if format == 1:
return "#run\tEin\tEout\tEcm\t+/-\tpressure\tFC4before\t+/-\tFC4after\t+/-\ttarTrans\t+/-\tsepTrans\t+/-\tHI_lt\t+/-\tCSF\t+/-\tSB0tot\t+/-\tSB0start\t+/-\tSB0end\t+/-\tRstart\t+/-stat\t+/-sys\tRend\t+/-stat\t+/-sys\tFC4/SB0start\t+/-stat\t+/-sys\tFC4/SB0end\t+/-stat\t+/-sys\tSB1tot\t+/-\tSB1start\t+/-\tSB1end\t+/-\tR1start\t+/-stat\t+/-sys\tR1end\t+/-stat\t+/-sys\tFC4/SB1start\t+/-stat\t+/-sys\tFC4/SB1end\t+/-stat\t+/-sys\n"
result = str(self.runNumber) + "\t"
result += "\t".join(map(str, self.eBeam)) + "\t"
result += "\t".join(map(str, self.Ecm)) + "\t"
result += str(self.pTarget) + "\t"
#result += "\t".join(map(str, self.fc4)) + "\t"
result += str(self.fc4[0]) + "\t" + str(self.fc4[0]*self.dFc4/100.0) + "\t" + str(self.fc4[1]) + "\t" + str(self.fc4[1]*self.dFc4/100.0) + "\t"
result += "\t".join(map(str, self.tarTrans)) + "\t"
result += "\t".join(map(str, self.sepTrans)) + "\t"
result += "\t".join(map(str, self.hiLt)) + "\t"
result += "\t".join(map(str, self.CSF)) + "\t"
result += "\t".join(map(str, self.sb0Tot)) + "\t"
result += "\t".join(map(str, self.sb0Start)) + "\t"
result += "\t".join(map(str, self.sb0End)) + "\t"
result += "\t".join(map(str, self.R[0])) + "\t"
result += "\t".join(map(str, self.R[1])) + "\t"
result += "\t".join(map(str, self.IoverN[0])) + "\t"
result += "\t".join(map(str, self.IoverN[1])) + "\t"
result += "\t".join(map(str, self.sb1Tot)) + "\t"
result += "\t".join(map(str, self.sb1Start)) + "\t"
result += "\t".join(map(str, self.sb1End)) + "\t"
result += "\t".join(map(str, self.R1[0])) + "\t"
result += "\t".join(map(str, self.R1[1])) + "\t"
result += "\t".join(map(str, self.IoverN1[0])) + "\t"
result += "\t".join(map(str, self.IoverN1[1])) + "\n"
return result
def get_sb_data(self,line):
"""Get SB and lt data from line.
Format:
Run SB0 +/- SB1 +/- lt_HI +/- lt_BGO +/- SB0start/s +/- SB0end/s +/- SB1start/s +/- SB1end/s +/- """
dataList = line.split()
self.sb0Tot = [float(dataList[1]),float(dataList[2])]
self.sb1Tot = [float(dataList[3]),float(dataList[4])]
self.hiLt = [float(dataList[5]),float(dataList[6])]
self.sb0Start = [float(dataList[9]),float(dataList[10])]
if self.sb0Start[0]==0:
self.sb0Start = [float('nan'),float('nan')]
self.sb0End = [float(dataList[11]),float(dataList[12])]
if self.sb0End[0]==0:
self.sb0End = [float('nan'),float('nan')]
self.sb1Start = [float(dataList[13]),float(dataList[14])]
if self.sb1Start[0]==0:
self.sb1Start = [float('nan'),float('nan')]
self.sb1End = [float(dataList[15]),float(dataList[16])]
if self.sb1End[0]==0:
self.sb1End = [float('nan'),float('nan')]
def make_input_from_run(self):
result = str(self.runNumber) + "\t"
result += "\t".join(map(str, self.eBeam)) + "\t"
result += str(self.pTarget) + "\t"
result += "\t".join(map(str, self.fc4)) + "\t"
result += "\t".join(map(str, self.tarTrans)) + "\t"
result += "\t".join(map(str, self.sepTrans)) + "\t"
result += "\t".join(map(str, self.CSF)) + "\t"
return result
def make_run_from_file_step1(self,line):
"""Get run data from line.
This function is used to read in a file with pre-calculated run data written by \'get_normalisation\'. This way, the normalisation can be done up to that point, the output file edited, and then read back in to continue with the modified runs.
Format:
Run Ein Eout Ecm +/- pressure FC4before +/- FC4after +/- tarTrans +/- sepTrans +/- HI_lt +/- CSF +/- SB0tot +/- SB0start +/- SB0end +/- Rstart +/- Rend +/- FC4/SB0start +/- FC4/SB0end +/- SB1tot +/- SB1start +/- SB1end +/- R1start +/- R1end +/- FC4/SB1start +/- FC4/SB1end +/-"""
lList = line.split()
self.runNumber = int(lList[0])
self.eBeam = [float(lList[1]),float(lList[2])]
self.Ecm = [float(lList[3]),float(lList[4])]
self.pTarget = float(lList[5])
self.fc4 = [float(lList[6]),float(lList[8])]
self.tarTrans = [float(lList[10]),float(lList[11])]
self.sepTrans = [float(lList[12]),float(lList[13])]
self.hiLt = [float(lList[14]),float(lList[15])]
self.CSF = [float(lList[16]),float(lList[17])]
self.sb0Tot = [float(lList[18]),float(lList[19])]
self.sb0Start =[float(lList[20]),float(lList[21])]
self.sb0End =[float(lList[22]),float(lList[23])]
self.R = [[float(lList[24]),float(lList[25])],[float(lList[26]),float(lList[27])]]
self.IoverN = [[float(lList[28]),float(lList[29])],[float(lList[30]),float(lList[31])]]
self.sb1Tot = [float(lList[32]),float(lList[33])]
self.sb1Start =[float(lList[34]),float(lList[35])]
self.sb1End =[float(lList[36]),float(lList[37])]
self.R1 = [[float(lList[38]),float(lList[39])],[float(lList[40]),float(lList[41])]]
self.IoverN1 = [[float(lList[42]),float(lList[43])],[float(lList[44]),float(lList[45])]]
return self
def make_run_from_input(self,line):
"""Get run data from line.
Format:
run Ein[keV/u] Eout[keV/u] pressure FC4before [eA] FC4after [eA] target +/- separator +/- CSF +/-.
Returns new Run object"""
dataList = line.split()
self.runNumber = int(dataList[0])
self.eBeam = [float(dataList[1]),float(dataList[2])]
self.pTarget = float(dataList[3])
self.fc4 = [float(dataList[4]),float(dataList[5])]
self.tarTrans = [float(dataList[6]),float(dataList[7])]
self.sepTrans = [float(dataList[8]),float(dataList[9])]
self.CSF = [float(dataList[10]),float(dataList[11])]
return self