-
-
Notifications
You must be signed in to change notification settings - Fork 16.7k
/
Copy pathtf.py
558 lines (470 loc) Β· 25.8 KB
/
tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# YOLOv5 π by Ultralytics, GPL-3.0 license
"""
TensorFlow/Keras and TFLite versions of YOLOv5
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
Usage:
$ python models/tf.py --weights yolov5s.pt --cfg yolov5s.yaml
Export int8 TFLite models:
$ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --tfl-int8 \
--source path/to/images/ --ncalib 100
Detection:
$ python detect.py --weights yolov5s.pb --img 320
$ python detect.py --weights yolov5s_saved_model --img 320
$ python detect.py --weights yolov5s-fp16.tflite --img 320
$ python detect.py --weights yolov5s-int8.tflite --img 320 --tfl-int8
For TensorFlow.js:
$ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --img 320 --tf-nms --agnostic-nms
$ pip install tensorflowjs
$ tensorflowjs_converter \
--input_format=tf_frozen_model \
--output_node_names='Identity,Identity_1,Identity_2,Identity_3' \
yolov5s.pb \
web_model
$ # Edit web_model/model.json to sort Identity* in ascending order
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/web_model public/web_model
$ npm start
"""
import argparse
import logging
import os
import sys
import traceback
from copy import deepcopy
from pathlib import Path
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
import yaml
from tensorflow import keras
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3
from models.experimental import MixConv2d, CrossConv, attempt_load
from models.yolo import Detect
from utils.datasets import LoadImages
from utils.general import check_dataset, check_yaml, make_divisible
logger = logging.getLogger(__name__)
class tf_BN(keras.layers.Layer):
# TensorFlow BatchNormalization wrapper
def __init__(self, w=None):
super(tf_BN, self).__init__()
self.bn = keras.layers.BatchNormalization(
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
epsilon=w.eps)
def call(self, inputs):
return self.bn(inputs)
class tf_Pad(keras.layers.Layer):
def __init__(self, pad):
super(tf_Pad, self).__init__()
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
def call(self, inputs):
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
class tf_Conv(keras.layers.Layer):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
# ch_in, ch_out, weights, kernel, stride, padding, groups
super(tf_Conv, self).__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
conv = keras.layers.Conv2D(
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()))
self.conv = conv if s == 1 else keras.Sequential([tf_Pad(autopad(k, p)), conv])
self.bn = tf_BN(w.bn) if hasattr(w, 'bn') else tf.identity
# YOLOv5 activations
if isinstance(w.act, nn.LeakyReLU):
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
elif isinstance(w.act, nn.Hardswish):
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
elif isinstance(w.act, nn.SiLU):
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
def call(self, inputs):
return self.act(self.bn(self.conv(inputs)))
class tf_Focus(keras.layers.Layer):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
# ch_in, ch_out, kernel, stride, padding, groups
super(tf_Focus, self).__init__()
self.conv = tf_Conv(c1 * 4, c2, k, s, p, g, act, w.conv)
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
# inputs = inputs / 255. # normalize 0-255 to 0-1
return self.conv(tf.concat([inputs[:, ::2, ::2, :],
inputs[:, 1::2, ::2, :],
inputs[:, ::2, 1::2, :],
inputs[:, 1::2, 1::2, :]], 3))
class tf_Bottleneck(keras.layers.Layer):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
super(tf_Bottleneck, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = tf_Conv(c_, c2, 3, 1, g=g, w=w.cv2)
self.add = shortcut and c1 == c2
def call(self, inputs):
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
class tf_Conv2d(keras.layers.Layer):
# Substitution for PyTorch nn.Conv2D
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
super(tf_Conv2d, self).__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
self.conv = keras.layers.Conv2D(
c2, k, s, 'VALID', use_bias=bias,
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
def call(self, inputs):
return self.conv(inputs)
class tf_BottleneckCSP(keras.layers.Layer):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
# ch_in, ch_out, number, shortcut, groups, expansion
super(tf_BottleneckCSP, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = tf_Conv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
self.cv3 = tf_Conv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
self.cv4 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv4)
self.bn = tf_BN(w.bn)
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
y1 = self.cv3(self.m(self.cv1(inputs)))
y2 = self.cv2(inputs)
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
class tf_C3(keras.layers.Layer):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
# ch_in, ch_out, number, shortcut, groups, expansion
super(tf_C3, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = tf_Conv(c1, c_, 1, 1, w=w.cv2)
self.cv3 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv3)
self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
class tf_SPP(keras.layers.Layer):
# Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
super(tf_SPP, self).__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = tf_Conv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
def call(self, inputs):
x = self.cv1(inputs)
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
class tf_Detect(keras.layers.Layer):
def __init__(self, nc=80, anchors=(), ch=(), w=None): # detection layer
super(tf_Detect, self).__init__()
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [tf.zeros(1)] * self.nl # init grid
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
self.anchor_grid = tf.reshape(tf.convert_to_tensor(w.anchor_grid.numpy(), dtype=tf.float32),
[self.nl, 1, -1, 1, 2])
self.m = [tf_Conv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
self.export = False # onnx export
self.training = True # set to False after building model
for i in range(self.nl):
ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
self.grid[i] = self._make_grid(nx, ny)
def call(self, inputs):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
x = []
for i in range(self.nl):
x.append(self.m[i](inputs[i]))
# x(bs,20,20,255) to x(bs,3,20,20,85)
ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i]
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
if not self.training: # inference
y = tf.sigmoid(x[i])
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
# Normalize xywh to 0-1 to reduce calibration error
xy /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
wh /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32)
y = tf.concat([xy, wh, y[..., 4:]], -1)
z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
return x if self.training else (tf.concat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
class tf_Upsample(keras.layers.Layer):
def __init__(self, size, scale_factor, mode, w=None):
super(tf_Upsample, self).__init__()
assert scale_factor == 2, "scale_factor must be 2"
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
if opt.tf_raw_resize:
# with default arguments: align_corners=False, half_pixel_centers=False
self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
size=(x.shape[1] * 2, x.shape[2] * 2))
else:
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
def call(self, inputs):
return self.upsample(inputs)
class tf_Concat(keras.layers.Layer):
def __init__(self, dimension=1, w=None):
super(tf_Concat, self).__init__()
assert dimension == 1, "convert only NCHW to NHWC concat"
self.d = 3
def call(self, inputs):
return tf.concat(inputs, self.d)
def parse_model(d, ch, model): # model_dict, input_channels(3)
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m_str = m
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
c1, c2 = ch[f], args[0]
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3]:
args.insert(2, n)
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
elif m is Detect:
args.append([ch[x + 1] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
else:
c2 = ch[f]
tf_m = eval('tf_' + m_str.replace('nn.', ''))
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
else tf_m(*args, w=model.model[i]) # module
torch_m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in torch_m_.parameters()]) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
ch.append(c2)
return keras.Sequential(layers), sorted(save)
class tf_Model():
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None): # model, input channels, number of classes
super(tf_Model, self).__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
# Define model
if nc and nc != self.yaml['nc']:
print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
self.yaml['nc'] = nc # override yaml value
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model) # model, savelist, ch_out
def predict(self, inputs, profile=False):
y = [] # outputs
x = inputs
for i, m in enumerate(self.model.layers):
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
x = m(x) # run
y.append(x if m.i in self.savelist else None) # save output
# Add TensorFlow NMS
if opt.tf_nms:
boxes = xywh2xyxy(x[0][..., :4])
probs = x[0][:, :, 4:5]
classes = x[0][:, :, 5:]
scores = probs * classes
if opt.agnostic_nms:
nms = agnostic_nms_layer()((boxes, classes, scores))
return nms, x[1]
else:
boxes = tf.expand_dims(boxes, 2)
nms = tf.image.combined_non_max_suppression(
boxes, scores, opt.topk_per_class, opt.topk_all, opt.iou_thres, opt.score_thres, clip_boxes=False)
return nms, x[1]
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
# x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
# xywh = x[..., :4] # x(6300,4) boxes
# conf = x[..., 4:5] # x(6300,1) confidences
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
# return tf.concat([conf, cls, xywh], 1)
class agnostic_nms_layer(keras.layers.Layer):
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
def call(self, input):
return tf.map_fn(agnostic_nms, input,
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
name='agnostic_nms')
def agnostic_nms(x):
boxes, classes, scores = x
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
scores_inp = tf.reduce_max(scores, -1)
selected_inds = tf.image.non_max_suppression(
boxes, scores_inp, max_output_size=opt.topk_all, iou_threshold=opt.iou_thres, score_threshold=opt.score_thres)
selected_boxes = tf.gather(boxes, selected_inds)
padded_boxes = tf.pad(selected_boxes,
paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
mode="CONSTANT", constant_values=0.0)
selected_scores = tf.gather(scores_inp, selected_inds)
padded_scores = tf.pad(selected_scores,
paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT", constant_values=-1.0)
selected_classes = tf.gather(class_inds, selected_inds)
padded_classes = tf.pad(selected_classes,
paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT", constant_values=-1.0)
valid_detections = tf.shape(selected_inds)[0]
return padded_boxes, padded_scores, padded_classes, valid_detections
def xywh2xyxy(xywh):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
def representative_dataset_gen():
# Representative dataset for use with converter.representative_dataset
n = 0
for path, img, im0s, vid_cap in dataset:
# Get sample input data as a numpy array in a method of your choosing.
n += 1
input = np.transpose(img, [1, 2, 0])
input = np.expand_dims(input, axis=0).astype(np.float32)
input /= 255.0
yield [input]
if n >= opt.ncalib:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='cfg path')
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic-batch-size', action='store_true', help='dynamic batch size')
parser.add_argument('--source', type=str, default='../data/coco128.yaml', help='dir of images or data.yaml file')
parser.add_argument('--ncalib', type=int, default=100, help='number of calibration images')
parser.add_argument('--tfl-int8', action='store_true', dest='tfl_int8', help='export TFLite int8 model')
parser.add_argument('--tf-nms', action='store_true', dest='tf_nms', help='TF NMS (without TFLite export)')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--tf-raw-resize', action='store_true', dest='tf_raw_resize',
help='use tf.raw_ops.ResizeNearestNeighbor for resize')
parser.add_argument('--topk-per-class', type=int, default=100, help='topk per class to keep in NMS')
parser.add_argument('--topk-all', type=int, default=100, help='topk for all classes to keep in NMS')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--score-thres', type=float, default=0.4, help='score threshold for NMS')
opt = parser.parse_args()
opt.cfg = check_yaml(opt.cfg) # check YAML
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
# Load PyTorch model
model = attempt_load(opt.weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
model.model[-1].export = False # set Detect() layer export=True
y = model(img) # dry run
nc = y[0].shape[-1] - 5
# TensorFlow saved_model export
try:
print('\nStarting TensorFlow saved_model export with TensorFlow %s...' % tf.__version__)
tf_model = tf_Model(opt.cfg, model=model, nc=nc)
img = tf.zeros((opt.batch_size, *opt.img_size, 3)) # NHWC Input for TensorFlow
m = tf_model.model.layers[-1]
assert isinstance(m, tf_Detect), "the last layer must be Detect"
m.training = False
y = tf_model.predict(img)
inputs = keras.Input(shape=(*opt.img_size, 3), batch_size=None if opt.dynamic_batch_size else opt.batch_size)
keras_model = keras.Model(inputs=inputs, outputs=tf_model.predict(inputs))
keras_model.summary()
path = opt.weights.replace('.pt', '_saved_model') # filename
keras_model.save(path, save_format='tf')
print('TensorFlow saved_model export success, saved as %s' % path)
except Exception as e:
print('TensorFlow saved_model export failure: %s' % e)
traceback.print_exc(file=sys.stdout)
# TensorFlow GraphDef export
try:
print('\nStarting TensorFlow GraphDef export with TensorFlow %s...' % tf.__version__)
# https://github.com/leimao/Frozen_Graph_TensorFlow
full_model = tf.function(lambda x: keras_model(x))
full_model = full_model.get_concrete_function(
tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()
f = opt.weights.replace('.pt', '.pb') # filename
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
logdir=os.path.dirname(f),
name=os.path.basename(f),
as_text=False)
print('TensorFlow GraphDef export success, saved as %s' % f)
except Exception as e:
print('TensorFlow GraphDef export failure: %s' % e)
traceback.print_exc(file=sys.stdout)
# TFLite model export
if not opt.tf_nms:
try:
print('\nStarting TFLite export with TensorFlow %s...' % tf.__version__)
# fp32 TFLite model export ---------------------------------------------------------------------------------
# converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
# converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
# converter.allow_custom_ops = False
# converter.experimental_new_converter = True
# tflite_model = converter.convert()
# f = opt.weights.replace('.pt', '.tflite') # filename
# open(f, "wb").write(tflite_model)
# fp16 TFLite model export ---------------------------------------------------------------------------------
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# converter.representative_dataset = representative_dataset_gen
# converter.target_spec.supported_types = [tf.float16]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.allow_custom_ops = False
converter.experimental_new_converter = True
tflite_model = converter.convert()
f = opt.weights.replace('.pt', '-fp16.tflite') # filename
open(f, "wb").write(tflite_model)
print('\nTFLite export success, saved as %s' % f)
# int8 TFLite model export ---------------------------------------------------------------------------------
if opt.tfl_int8:
# Representative Dataset
if opt.source.endswith('.yaml'):
with open(check_yaml(opt.source)) as f:
data = yaml.load(f, Loader=yaml.FullLoader) # data dict
check_dataset(data) # check
opt.source = data['train']
dataset = LoadImages(opt.source, img_size=opt.img_size, auto=False)
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.allow_custom_ops = False
converter.experimental_new_converter = True
converter.experimental_new_quantizer = False
tflite_model = converter.convert()
f = opt.weights.replace('.pt', '-int8.tflite') # filename
open(f, "wb").write(tflite_model)
print('\nTFLite (int8) export success, saved as %s' % f)
except Exception as e:
print('\nTFLite export failure: %s' % e)
traceback.print_exc(file=sys.stdout)