-
-
Notifications
You must be signed in to change notification settings - Fork 16.4k
/
export.py
1546 lines (1324 loc) Β· 66.9 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Ultralytics YOLOv5 π, AGPL-3.0 license
"""
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
PaddlePaddle | `paddle` | yolov5s_paddle_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
Usage:
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
Inference:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
$ npm start
"""
import argparse
import contextlib
import json
import os
import platform
import re
import subprocess
import sys
import time
import warnings
from pathlib import Path
import pandas as pd
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != "Windows":
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
from utils.dataloaders import LoadImages
from utils.general import (
LOGGER,
Profile,
check_dataset,
check_img_size,
check_requirements,
check_version,
check_yaml,
colorstr,
file_size,
get_default_args,
print_args,
url2file,
yaml_save,
)
from utils.torch_utils import select_device, smart_inference_mode
MACOS = platform.system() == "Darwin" # macOS environment
class iOSModel(torch.nn.Module):
"""An iOS-compatible wrapper for YOLOv5 models that normalizes input images based on their dimensions."""
def __init__(self, model, im):
"""
Initializes an iOS compatible model with normalization based on image dimensions.
Args:
model (torch.nn.Module): The PyTorch model to be adapted for iOS compatibility.
im (torch.Tensor): An input tensor representing a batch of images with shape (B, C, H, W).
Returns:
None: This method does not return any value.
Notes:
This initializer configures normalization based on the input image dimensions, which is critical for
ensuring the model's compatibility and proper functionality on iOS devices. The normalization step
involves dividing by the image width if the image is square; otherwise, additional conditions might apply.
"""
super().__init__()
b, c, h, w = im.shape # batch, channel, height, width
self.model = model
self.nc = model.nc # number of classes
if w == h:
self.normalize = 1.0 / w
else:
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
# np = model(im)[0].shape[1] # number of points
# self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger)
def forward(self, x):
"""
Run a forward pass on the input tensor, returning class confidences and normalized coordinates.
Args:
x (torch.Tensor): Input tensor containing the image data with shape (batch, channels, height, width).
Returns:
torch.Tensor: Concatenated tensor with normalized coordinates (xywh), confidence scores (conf),
and class probabilities (cls), having shape (N, 4 + 1 + C), where N is the number of predictions,
and C is the number of classes.
Examples:
```python
model = iOSModel(pretrained_model, input_image)
output = model.forward(torch_input_tensor)
```
"""
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
def export_formats():
r"""
Returns a DataFrame of supported YOLOv5 model export formats and their properties.
Returns:
pandas.DataFrame: A DataFrame containing supported export formats and their properties. The DataFrame
includes columns for format name, CLI argument suffix, file extension or directory name, and boolean flags
indicating if the export format supports training and detection.
Examples:
```python
formats = export_formats()
print(f"Supported export formats:\n{formats}")
```
Notes:
The DataFrame contains the following columns:
- Format: The name of the model format (e.g., PyTorch, TorchScript, ONNX, etc.).
- Include Argument: The argument to use with the export script to include this format.
- File Suffix: File extension or directory name associated with the format.
- Supports Training: Whether the format supports training.
- Supports Detection: Whether the format supports detection.
"""
x = [
["PyTorch", "-", ".pt", True, True],
["TorchScript", "torchscript", ".torchscript", True, True],
["ONNX", "onnx", ".onnx", True, True],
["OpenVINO", "openvino", "_openvino_model", True, False],
["TensorRT", "engine", ".engine", False, True],
["CoreML", "coreml", ".mlpackage", True, False],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
["TensorFlow GraphDef", "pb", ".pb", True, True],
["TensorFlow Lite", "tflite", ".tflite", True, False],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
["TensorFlow.js", "tfjs", "_web_model", False, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
]
return pd.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])
def try_export(inner_func):
"""
Log success or failure, execution time, and file size for YOLOv5 model export functions wrapped with @try_export.
Args:
inner_func (Callable): The model export function to be wrapped by the decorator.
Returns:
Callable: The wrapped function that logs execution details. When executed, this wrapper function returns either:
- Tuple (str | torch.nn.Module): On success β the file path of the exported model and the model instance.
- Tuple (None, None): On failure β None values indicating export failure.
Examples:
```python
@try_export
def export_onnx(model, filepath):
# implementation here
pass
exported_file, exported_model = export_onnx(yolo_model, 'path/to/save/model.onnx')
```
Notes:
For additional requirements and model export formats, refer to the
[Ultralytics YOLOv5 GitHub repository](https://github.com/ultralytics/ultralytics).
"""
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
"""Logs success/failure and execution details of model export functions wrapped with @try_export decorator."""
prefix = inner_args["prefix"]
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(f"{prefix} export success β
{dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)")
return f, model
except Exception as e:
LOGGER.info(f"{prefix} export failure β {dt.t:.1f}s: {e}")
return None, None
return outer_func
@try_export
def export_torchscript(model, im, file, optimize, prefix=colorstr("TorchScript:")):
"""
Export a YOLOv5 model to the TorchScript format.
Args:
model (torch.nn.Module): The YOLOv5 model to be exported.
im (torch.Tensor): Example input tensor to be used for tracing the TorchScript model.
file (Path): File path where the exported TorchScript model will be saved.
optimize (bool): If True, applies optimizations for mobile deployment.
prefix (str): Optional prefix for log messages. Default is 'TorchScript:'.
Returns:
(str | None, torch.jit.ScriptModule | None): A tuple containing the file path of the exported model
(as a string) and the TorchScript model (as a torch.jit.ScriptModule). If the export fails, both elements
of the tuple will be None.
Notes:
- This function uses tracing to create the TorchScript model.
- Metadata, including the input image shape, model stride, and class names, is saved in an extra file (`config.txt`)
within the TorchScript model package.
- For mobile optimization, refer to the PyTorch tutorial: https://pytorch.org/tutorials/recipes/mobile_interpreter.html
Example:
```python
from pathlib import Path
import torch
from models.experimental import attempt_load
from utils.torch_utils import select_device
# Load model
weights = 'yolov5s.pt'
device = select_device('')
model = attempt_load(weights, device=device)
# Example input tensor
im = torch.zeros(1, 3, 640, 640).to(device)
# Export model
file = Path('yolov5s.torchscript')
export_torchscript(model, im, file, optimize=False)
```
"""
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
f = file.with_suffix(".torchscript")
ts = torch.jit.trace(model, im, strict=False)
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap()
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
else:
ts.save(str(f), _extra_files=extra_files)
return f, None
@try_export
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")):
"""
Export a YOLOv5 model to ONNX format with dynamic axes support and optional model simplification.
Args:
model (torch.nn.Module): The YOLOv5 model to be exported.
im (torch.Tensor): A sample input tensor for model tracing, usually the shape is (1, 3, height, width).
file (pathlib.Path | str): The output file path where the ONNX model will be saved.
opset (int): The ONNX opset version to use for export.
dynamic (bool): If True, enables dynamic axes for batch, height, and width dimensions.
simplify (bool): If True, applies ONNX model simplification for optimization.
prefix (str): A prefix string for logging messages, defaults to 'ONNX:'.
Returns:
tuple[pathlib.Path | str, None]: The path to the saved ONNX model file and None (consistent with decorator).
Raises:
ImportError: If required libraries for export (e.g., 'onnx', 'onnx-simplifier') are not installed.
AssertionError: If the simplification check fails.
Notes:
The required packages for this function can be installed via:
```
pip install onnx onnx-simplifier onnxruntime onnxruntime-gpu
```
Example:
```python
from pathlib import Path
import torch
from models.experimental import attempt_load
from utils.torch_utils import select_device
# Load model
weights = 'yolov5s.pt'
device = select_device('')
model = attempt_load(weights, map_location=device)
# Example input tensor
im = torch.zeros(1, 3, 640, 640).to(device)
# Export model
file_path = Path('yolov5s.onnx')
export_onnx(model, im, file_path, opset=12, dynamic=True, simplify=True)
```
"""
check_requirements("onnx>=1.12.0")
import onnx
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
f = str(file.with_suffix(".onnx"))
output_names = ["output0", "output1"] if isinstance(model, SegmentationModel) else ["output0"]
if dynamic:
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
if isinstance(model, SegmentationModel):
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(model, DetectionModel):
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
torch.onnx.export(
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic or None,
)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Metadata
d = {"stride": int(max(model.stride)), "names": model.names}
for k, v in d.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
check_requirements(("onnxruntime-gpu" if cuda else "onnxruntime", "onnxslim"))
import onnxslim
LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f"{prefix} simplifier failure: {e}")
return f, model_onnx
@try_export
def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:")):
"""
Export a YOLOv5 model to OpenVINO format with optional FP16 and INT8 quantization.
Args:
file (Path): Path to the output file where the OpenVINO model will be saved.
metadata (dict): Dictionary including model metadata such as names and strides.
half (bool): If True, export the model with FP16 precision.
int8 (bool): If True, export the model with INT8 quantization.
data (str): Path to the dataset YAML file required for INT8 quantization.
prefix (str): Prefix string for logging purposes (default is "OpenVINO:").
Returns:
(str, openvino.runtime.Model | None): The OpenVINO model file path and openvino.runtime.Model object if export is
successful; otherwise, None.
Notes:
- Requires `openvino-dev` package version 2023.0 or higher. Install with:
`$ pip install openvino-dev>=2023.0`
- For INT8 quantization, also requires `nncf` library version 2.5.0 or higher. Install with:
`$ pip install nncf>=2.5.0`
Examples:
```python
from pathlib import Path
from ultralytics import YOLOv5
model = YOLOv5('yolov5s.pt')
export_openvino(Path('yolov5s.onnx'), metadata={'names': model.names, 'stride': model.stride}, half=True,
int8=False, data='data.yaml')
```
This will export the YOLOv5 model to OpenVINO with FP16 precision but without INT8 quantization, saving it to
the specified file path.
"""
check_requirements("openvino-dev>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.runtime as ov # noqa
from openvino.tools import mo # noqa
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
f = str(file).replace(file.suffix, f"_{'int8_' if int8 else ''}openvino_model{os.sep}")
f_onnx = file.with_suffix(".onnx")
f_ov = str(Path(f) / file.with_suffix(".xml").name)
ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework="onnx", compress_to_fp16=half) # export
if int8:
check_requirements("nncf>=2.5.0") # requires at least version 2.5.0 to use the post-training quantization
import nncf
import numpy as np
from utils.dataloaders import create_dataloader
def gen_dataloader(yaml_path, task="train", imgsz=640, workers=4):
"""Generates a DataLoader for model training or validation based on the given YAML dataset configuration."""
data_yaml = check_yaml(yaml_path)
data = check_dataset(data_yaml)
dataloader = create_dataloader(
data[task], imgsz=imgsz, batch_size=1, stride=32, pad=0.5, single_cls=False, rect=False, workers=workers
)[0]
return dataloader
# noqa: F811
def transform_fn(data_item):
"""
Quantization transform function.
Extracts and preprocess input data from dataloader item for quantization.
Args:
data_item: Tuple with data item produced by DataLoader during iteration
Returns:
input_tensor: Input data for quantization
"""
assert data_item[0].dtype == torch.uint8, "input image must be uint8 for the quantization preprocessing"
img = data_item[0].numpy().astype(np.float32) # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return np.expand_dims(img, 0) if img.ndim == 3 else img
ds = gen_dataloader(data)
quantization_dataset = nncf.Dataset(ds, transform_fn)
ov_model = nncf.quantize(ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
ov.serialize(ov_model, f_ov) # save
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
return f, None
@try_export
def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
"""
Export a YOLOv5 PyTorch model to PaddlePaddle format using X2Paddle, saving the converted model and metadata.
Args:
model (torch.nn.Module): The YOLOv5 model to be exported.
im (torch.Tensor): Input tensor used for model tracing during export.
file (pathlib.Path): Path to the source file to be converted.
metadata (dict): Additional metadata to be saved alongside the model.
prefix (str): Prefix for logging information.
Returns:
tuple (str, None): A tuple where the first element is the path to the saved PaddlePaddle model, and the
second element is None.
Examples:
```python
from pathlib import Path
import torch
# Assume 'model' is a pre-trained YOLOv5 model and 'im' is an example input tensor
model = ... # Load your model here
im = torch.randn((1, 3, 640, 640)) # Dummy input tensor for tracing
file = Path("yolov5s.pt")
metadata = {"stride": 32, "names": ["person", "bicycle", "car", "motorbike"]}
export_paddle(model=model, im=im, file=file, metadata=metadata)
```
Notes:
Ensure that `paddlepaddle` and `x2paddle` are installed, as these are required for the export function. You can
install them via pip:
```
$ pip install paddlepaddle x2paddle
```
"""
check_requirements(("paddlepaddle", "x2paddle"))
import x2paddle
from x2paddle.convert import pytorch2paddle
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
f = str(file).replace(".pt", f"_paddle_model{os.sep}")
pytorch2paddle(module=model, save_dir=f, jit_type="trace", input_examples=[im]) # export
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
return f, None
@try_export
def export_coreml(model, im, file, int8, half, nms, mlmodel, prefix=colorstr("CoreML:")):
"""
Export a YOLOv5 model to CoreML format with optional NMS, INT8, and FP16 support.
Args:
model (torch.nn.Module): The YOLOv5 model to be exported.
im (torch.Tensor): Example input tensor to trace the model.
file (pathlib.Path): Path object where the CoreML model will be saved.
int8 (bool): Flag indicating whether to use INT8 quantization (default is False).
half (bool): Flag indicating whether to use FP16 quantization (default is False).
nms (bool): Flag indicating whether to include Non-Maximum Suppression (default is False).
mlmodel (bool): Flag indicating whether to export as older *.mlmodel format (default is False).
prefix (str): Prefix string for logging purposes (default is 'CoreML:').
Returns:
tuple[pathlib.Path | None, None]: The path to the saved CoreML model file, or (None, None) if there is an error.
Notes:
The exported CoreML model will be saved with a .mlmodel extension.
Quantization is supported only on macOS.
Example:
```python
from pathlib import Path
import torch
from models.yolo import Model
model = Model(cfg, ch=3, nc=80)
im = torch.randn(1, 3, 640, 640)
file = Path("yolov5s_coreml")
export_coreml(model, im, file, int8=False, half=False, nms=True, mlmodel=False)
```
"""
check_requirements("coremltools")
import coremltools as ct
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
if mlmodel:
f = file.with_suffix(".mlmodel")
convert_to = "neuralnetwork"
precision = None
else:
f = file.with_suffix(".mlpackage")
convert_to = "mlprogram"
precision = ct.precision.FLOAT16 if half else ct.precision.FLOAT32
if nms:
model = iOSModel(model, im)
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
ct_model = ct.convert(
ts,
inputs=[ct.ImageType("image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0])],
convert_to=convert_to,
compute_precision=precision,
)
bits, mode = (8, "kmeans") if int8 else (16, "linear") if half else (32, None)
if bits < 32:
if mlmodel:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=DeprecationWarning
) # suppress numpy==1.20 float warning, fixed in coremltools==7.0
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
elif bits == 8:
op_config = ct.optimize.coreml.OpPalettizerConfig(mode=mode, nbits=bits, weight_threshold=512)
config = ct.optimize.coreml.OptimizationConfig(global_config=op_config)
ct_model = ct.optimize.coreml.palettize_weights(ct_model, config)
ct_model.save(f)
return f, ct_model
@try_export
def export_engine(
model, im, file, half, dynamic, simplify, workspace=4, verbose=False, cache="", prefix=colorstr("TensorRT:")
):
"""
Export a YOLOv5 model to TensorRT engine format, requiring GPU and TensorRT>=7.0.0.
Args:
model (torch.nn.Module): YOLOv5 model to be exported.
im (torch.Tensor): Input tensor of shape (B, C, H, W).
file (pathlib.Path): Path to save the exported model.
half (bool): Set to True to export with FP16 precision.
dynamic (bool): Set to True to enable dynamic input shapes.
simplify (bool): Set to True to simplify the model during export.
workspace (int): Workspace size in GB (default is 4).
verbose (bool): Set to True for verbose logging output.
cache (str): Path to save the TensorRT timing cache.
prefix (str): Log message prefix.
Returns:
(pathlib.Path, None): Tuple containing the path to the exported model and None.
Raises:
AssertionError: If executed on CPU instead of GPU.
RuntimeError: If there is a failure in parsing the ONNX file.
Example:
```python
from ultralytics import YOLOv5
import torch
from pathlib import Path
model = YOLOv5('yolov5s.pt') # Load a pre-trained YOLOv5 model
input_tensor = torch.randn(1, 3, 640, 640).cuda() # example input tensor on GPU
export_path = Path('yolov5s.engine') # export destination
export_engine(model.model, input_tensor, export_path, half=True, dynamic=True, simplify=True, workspace=8, verbose=True)
```
"""
assert im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
try:
import tensorrt as trt
except Exception:
if platform.system() == "Linux":
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
import tensorrt as trt
if trt.__version__[0] == "7": # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
grid = model.model[-1].anchor_grid
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
model.model[-1].anchor_grid = grid
else: # TensorRT >= 8
check_version(trt.__version__, "8.0.0", hard=True) # require tensorrt>=8.0.0
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
onnx = file.with_suffix(".onnx")
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
assert onnx.exists(), f"failed to export ONNX file: {onnx}"
f = file.with_suffix(".engine") # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
if is_trt10:
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)
else: # TensorRT versions 7, 8
config.max_workspace_size = workspace * 1 << 30
if cache: # enable timing cache
Path(cache).parent.mkdir(parents=True, exist_ok=True)
buf = Path(cache).read_bytes() if Path(cache).exists() else b""
timing_cache = config.create_timing_cache(buf)
config.set_timing_cache(timing_cache, ignore_mismatch=True)
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f"failed to load ONNX file: {onnx}")
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
if dynamic:
if im.shape[0] <= 1:
LOGGER.warning(f"{prefix} WARNING β οΈ --dynamic model requires maximum --batch-size argument")
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
config.add_optimization_profile(profile)
LOGGER.info(f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}")
if builder.platform_has_fast_fp16 and half:
config.set_flag(trt.BuilderFlag.FP16)
build = builder.build_serialized_network if is_trt10 else builder.build_engine
with build(network, config) as engine, open(f, "wb") as t:
t.write(engine if is_trt10 else engine.serialize())
if cache: # save timing cache
with open(cache, "wb") as c:
c.write(config.get_timing_cache().serialize())
return f, None
@try_export
def export_saved_model(
model,
im,
file,
dynamic,
tf_nms=False,
agnostic_nms=False,
topk_per_class=100,
topk_all=100,
iou_thres=0.45,
conf_thres=0.25,
keras=False,
prefix=colorstr("TensorFlow SavedModel:"),
):
"""
Export a YOLOv5 model to the TensorFlow SavedModel format, supporting dynamic axes and non-maximum suppression
(NMS).
Args:
model (torch.nn.Module): The PyTorch model to convert.
im (torch.Tensor): Sample input tensor with shape (B, C, H, W) for tracing.
file (pathlib.Path): File path to save the exported model.
dynamic (bool): Flag to indicate whether dynamic axes should be used.
tf_nms (bool, optional): Enable TensorFlow non-maximum suppression (NMS). Default is False.
agnostic_nms (bool, optional): Enable class-agnostic NMS. Default is False.
topk_per_class (int, optional): Top K detections per class to keep before applying NMS. Default is 100.
topk_all (int, optional): Top K detections across all classes to keep before applying NMS. Default is 100.
iou_thres (float, optional): IoU threshold for NMS. Default is 0.45.
conf_thres (float, optional): Confidence threshold for detections. Default is 0.25.
keras (bool, optional): Save the model in Keras format if True. Default is False.
prefix (str, optional): Prefix for logging messages. Default is "TensorFlow SavedModel:".
Returns:
tuple[str, tf.keras.Model | None]: A tuple containing the path to the saved model folder and the Keras model instance,
or None if TensorFlow export fails.
Notes:
- The method supports TensorFlow versions up to 2.15.1.
- TensorFlow NMS may not be supported in older TensorFlow versions.
- If the TensorFlow version exceeds 2.13.1, it might cause issues when exporting to TFLite.
Refer to: https://github.com/ultralytics/yolov5/issues/12489
Example:
```python
model, im = ... # Initialize your PyTorch model and input tensor
export_saved_model(model, im, Path("yolov5_saved_model"), dynamic=True)
```
"""
# YOLOv5 TensorFlow SavedModel export
try:
import tensorflow as tf
except Exception:
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}<=2.15.1")
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
from models.tf import TFModel
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
if tf.__version__ > "2.13.1":
helper_url = "https://github.com/ultralytics/yolov5/issues/12489"
LOGGER.info(
f"WARNING β οΈ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}"
) # handling issue https://github.com/ultralytics/yolov5/issues/12489
f = str(file).replace(".pt", "_saved_model")
batch_size, ch, *imgsz = list(im.shape) # BCHW
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
keras_model.trainable = False
keras_model.summary()
if keras:
keras_model.save(f, save_format="tf")
else:
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(spec)
frozen_func = convert_variables_to_constants_v2(m)
tfm = tf.Module()
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
tfm.__call__(im)
tf.saved_model.save(
tfm,
f,
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
if check_version(tf.__version__, "2.6")
else tf.saved_model.SaveOptions(),
)
return f, keras_model
@try_export
def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
"""
Export YOLOv5 model to TensorFlow GraphDef (*.pb) format.
Args:
keras_model (tf.keras.Model): The Keras model to be converted.
file (Path): The output file path where the GraphDef will be saved.
prefix (str): Optional prefix string; defaults to a colored string indicating TensorFlow GraphDef export status.
Returns:
Tuple[Path, None]: The file path where the GraphDef model was saved and a None placeholder.
Notes:
For more details, refer to the guide on frozen graphs: https://github.com/leimao/Frozen_Graph_TensorFlow
Example:
```python
from pathlib import Path
keras_model = ... # assume an existing Keras model
file = Path("model.pb")
export_pb(keras_model, file)
```
"""
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
f = file.with_suffix(".pb")
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
return f, None
@try_export
def export_tflite(
keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")
):
# YOLOv5 TensorFlow Lite export
"""
Export a YOLOv5 model to TensorFlow Lite format with optional INT8 quantization and NMS support.
Args:
keras_model (tf.keras.Model): The Keras model to be exported.
im (torch.Tensor): An input image tensor for normalization and model tracing.
file (Path): The file path to save the TensorFlow Lite model.
int8 (bool): Enables INT8 quantization if True.
per_tensor (bool): If True, disables per-channel quantization.
data (str): Path to the dataset for representative dataset generation in INT8 quantization.
nms (bool): Enables Non-Maximum Suppression (NMS) if True.
agnostic_nms (bool): Enables class-agnostic NMS if True.
prefix (str): Prefix for log messages.
Returns:
(str | None, tflite.Model | None): The file path of the exported TFLite model and the TFLite model instance, or None
if the export failed.
Example:
```python
from pathlib import Path
import torch
import tensorflow as tf
# Load a Keras model wrapping a YOLOv5 model
keras_model = tf.keras.models.load_model('path/to/keras_model.h5')
# Example input tensor
im = torch.zeros(1, 3, 640, 640)
# Export the model
export_tflite(keras_model, im, Path('model.tflite'), int8=True, per_tensor=False, data='data/coco.yaml',
nms=True, agnostic_nms=False)
```
Notes:
- Ensure TensorFlow and TensorFlow Lite dependencies are installed.
- INT8 quantization requires a representative dataset to achieve optimal accuracy.
- TensorFlow Lite models are suitable for efficient inference on mobile and edge devices.
"""
import tensorflow as tf
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
batch_size, ch, *imgsz = list(im.shape) # BCHW
f = str(file).replace(".pt", "-fp16.tflite")
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_types = [tf.float16]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
if int8:
from models.tf import representative_dataset_gen
dataset = LoadImages(check_dataset(check_yaml(data))["train"], img_size=imgsz, auto=False)
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = []
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.experimental_new_quantizer = True
if per_tensor:
converter._experimental_disable_per_channel = True
f = str(file).replace(".pt", "-int8.tflite")
if nms or agnostic_nms:
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
tflite_model = converter.convert()
open(f, "wb").write(tflite_model)
return f, None
@try_export
def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
"""
Exports a YOLOv5 model to Edge TPU compatible TFLite format; requires Linux and Edge TPU compiler.
Args:
file (Path): Path to the YOLOv5 model file to be exported (.pt format).
prefix (str, optional): Prefix for logging messages. Defaults to colorstr("Edge TPU:").
Returns:
tuple[Path, None]: Path to the exported Edge TPU compatible TFLite model, None.
Raises:
AssertionError: If the system is not Linux.
subprocess.CalledProcessError: If any subprocess call to install or run the Edge TPU compiler fails.
Notes:
To use this function, ensure you have the Edge TPU compiler installed on your Linux system. You can find
installation instructions here: https://coral.ai/docs/edgetpu/compiler/.
Example:
```python
from pathlib import Path
file = Path('yolov5s.pt')
export_edgetpu(file)
```
"""
cmd = "edgetpu_compiler --version"
help_url = "https://coral.ai/docs/edgetpu/compiler/"
assert platform.system() == "Linux", f"export only supported on Linux. See {help_url}"
if subprocess.run(f"{cmd} > /dev/null 2>&1", shell=True).returncode != 0:
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system
for c in (
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
"sudo apt-get update",
"sudo apt-get install edgetpu-compiler",
):
subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model
f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model
subprocess.run(
[
"edgetpu_compiler",
"-s",
"-d",
"-k",
"10",
"--out_dir",
str(file.parent),
f_tfl,
],
check=True,
)
return f, None
@try_export
def export_tfjs(file, int8, prefix=colorstr("TensorFlow.js:")):
"""
Convert a YOLOv5 model to TensorFlow.js format with optional uint8 quantization.
Args:
file (Path): Path to the YOLOv5 model file to be converted, typically having a ".pt" or ".onnx" extension.
int8 (bool): If True, applies uint8 quantization during the conversion process.
prefix (str): Optional prefix for logging messages, default is 'TensorFlow.js:' with color formatting.
Returns:
(str, None): Tuple containing the output directory path as a string and None.
Notes:
- This function requires the `tensorflowjs` package. Install it using:
```shell
pip install tensorflowjs
```
- The converted TensorFlow.js model will be saved in a directory with the "_web_model" suffix appended to the original file name.
- The conversion involves running shell commands that invoke the TensorFlow.js converter tool.
Example:
```python