-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
95 lines (77 loc) · 3.09 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.prompts import PromptTemplate
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import CTransformers
from langchain.chains import RetrievalQA
import chainlit as cl
DB_FAISS_PATH = "vectorstores/db_faiss"
custom_prompt_template = """ You're an ethical and knowledgeable assistant specializing in oncology. Provide helpful and
accurate information on oncology-related topics. Prioritize safety, respect, and honesty in your responses. Clarify if a
question is unclear or outside the scope of oncology,and refrain from sharing false information. Your goal is to
positively contribute to understanding and managing oncological issues.
Context: {context}
Question: {question}
Only return the helpful answer below and nothing else.
Helpful Answer:
"""
def set_custom_prompt():
"""
Prompt template for QA retrieval for each vectors
"""
prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question'])
return prompt
def load_llm():
llm = CTransformers(
model = "llama-2-7b-chat.ggmlv3.q2_K.bin",
#model = "TheBloke/Llama-2-7B-Chat-GGML",
model_type = "llama",
max_new_tokens = 512,
temperature = 0.5
)
return llm
def retrieval_qa_chain(llm, prompt, db):
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever = db.as_retriever(search_kwargs={'k': 2}),
return_source_documents = True,
chain_type_kwargs = {'prompt': prompt}
)
return qa_chain
def qa_bot():
embeddings = HuggingFaceEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2', model_kwargs = {'device': 'cpu'})
db = FAISS.load_local(DB_FAISS_PATH,embeddings)
llm = load_llm()
qa_prompt = set_custom_prompt()
qa = retrieval_qa_chain(llm, qa_prompt, db)
return qa
def final_result(query):
qa_result = qa_bot()
response = qa_result({'query':query})
return response
#chainlit
@cl.on_chat_start
async def start():
chain = qa_bot()
msg = cl.Message(content="Starting the answer engine...")
await msg.send()
msg.content = "Hi, Welcome to Onco-Llama-logist !"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached=True
res = await chain.acall(message.content, callbacks=[cb])
answer = res["result"]
sources = res["sources_documents"]
if sources:
answer += f"\nSources:" + str(sources)
else:
answer += f"\n There may not be sufficient evidence to answer exactly."
#cl.user_session.set("chain",chain)
await cl.Message(content=answer).send()