-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathoptimization.py
executable file
·263 lines (210 loc) · 8.43 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import g2o
class BundleAdjustment(g2o.SparseOptimizer):
def __init__(self, ):
super().__init__()
# Higher confident (better than CHOLMOD, according to
# paper "3-D Mapping With an RGB-D Camera")
solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
solver = g2o.OptimizationAlgorithmLevenberg(solver)
super().set_algorithm(solver)
# Convergence Criterion
terminate = g2o.SparseOptimizerTerminateAction()
terminate.set_gain_threshold(1e-6)
super().add_post_iteration_action(terminate)
# Robust cost Function (Huber function) delta
self.delta = np.sqrt(5.991)
self.aborted = False
def optimize(self, max_iterations=10):
super().initialize_optimization()
super().optimize(max_iterations)
try:
return not self.aborted
finally:
self.aborted = False
def add_pose(self, pose_id, pose, cam, fixed=False):
sbacam = g2o.SBACam(
pose.orientation(), pose.position())
sbacam.set_cam(
cam.fx, cam.fy, cam.cx, cam.cy, cam.baseline)
v_se3 = g2o.VertexCam()
v_se3.set_id(pose_id * 2)
v_se3.set_estimate(sbacam)
v_se3.set_fixed(fixed)
super().add_vertex(v_se3)
def add_point(self, point_id, point, fixed=False, marginalized=True):
v_p = g2o.VertexSBAPointXYZ()
v_p.set_id(point_id * 2 + 1)
v_p.set_marginalized(marginalized)
v_p.set_estimate(point)
v_p.set_fixed(fixed)
super().add_vertex(v_p)
def add_edge(self, id, point_id, pose_id, meas):
if meas.is_stereo():
edge = self.stereo_edge(meas.xyx)
elif meas.is_left():
edge = self.mono_edge(meas.xy)
elif meas.is_right():
edge = self.mono_edge_right(meas.xy)
edge.set_id(id)
edge.set_vertex(0, self.vertex(point_id * 2 + 1))
edge.set_vertex(1, self.vertex(pose_id * 2))
kernel = g2o.RobustKernelHuber(self.delta)
edge.set_robust_kernel(kernel)
super().add_edge(edge)
def stereo_edge(self, projection, information=np.identity(3)):
e = g2o.EdgeProjectP2SC()
e.set_measurement(projection)
e.set_information(information)
return e
def mono_edge(self, projection,
information=np.identity(2) * 0.5):
e = g2o.EdgeProjectP2MC()
e.set_measurement(projection)
e.set_information(information)
return e
def mono_edge_right(self, projection,
information=np.identity(2) * 0.5):
e = g2o.EdgeProjectP2MCRight()
e.set_measurement(projection)
e.set_information(information)
return e
def get_pose(self, id):
return self.vertex(id * 2).estimate()
def get_point(self, id):
return self.vertex(id * 2 + 1).estimate()
def abort(self):
self.aborted = True
class LocalBA(object):
def __init__(self, ):
self.optimizer = BundleAdjustment()
self.measurements = []
self.keyframes = []
self.mappoints = set()
# threshold for confidence interval of 95%
self.huber_threshold = 5.991
def set_data(self, adjust_keyframes, fixed_keyframes):
self.clear()
for kf in adjust_keyframes:
self.optimizer.add_pose(kf.id, kf.pose, kf.cam, fixed=False)
self.keyframes.append(kf)
for m in kf.measurements():
pt = m.mappoint
if pt not in self.mappoints:
self.optimizer.add_point(pt.id, pt.position)
self.mappoints.add(pt)
edge_id = len(self.measurements)
self.optimizer.add_edge(edge_id, pt.id, kf.id, m)
self.measurements.append(m)
for kf in fixed_keyframes:
self.optimizer.add_pose(kf.id, kf.pose, kf.cam, fixed=True)
for m in kf.measurements():
if m.mappoint in self.mappoints:
edge_id = len(self.measurements)
self.optimizer.add_edge(edge_id, m.mappoint.id, kf.id, m)
self.measurements.append(m)
def update_points(self):
for mappoint in self.mappoints:
mappoint.update_position(self.optimizer.get_point(mappoint.id))
def update_poses(self):
for keyframe in self.keyframes:
keyframe.update_pose(self.optimizer.get_pose(keyframe.id))
keyframe.update_reference()
keyframe.update_preceding()
def get_bad_measurements(self):
bad_measurements = []
for edge in self.optimizer.active_edges():
if edge.chi2() > self.huber_threshold:
bad_measurements.append(self.measurements[edge.id()])
return bad_measurements
def clear(self):
self.optimizer.clear()
self.keyframes.clear()
self.mappoints.clear()
self.measurements.clear()
def abort(self):
self.optimizer.abort()
def optimize(self, max_iterations):
return self.optimizer.optimize(max_iterations)
class PoseGraphOptimization(g2o.SparseOptimizer):
def __init__(self):
super().__init__()
solver = g2o.BlockSolverSE3(g2o.LinearSolverCholmodSE3())
solver = g2o.OptimizationAlgorithmLevenberg(solver)
super().set_algorithm(solver)
def optimize(self, max_iterations=20):
super().initialize_optimization()
super().optimize(max_iterations)
def add_vertex(self, id, pose, fixed=False):
v_se3 = g2o.VertexSE3()
v_se3.set_id(id)
v_se3.set_estimate(pose)
v_se3.set_fixed(fixed)
super().add_vertex(v_se3)
def add_edge(self, vertices,
measurement=None,
information=np.identity(6),
robust_kernel=None):
edge = g2o.EdgeSE3()
for i, v in enumerate(vertices):
if isinstance(v, int):
v = self.vertex(v)
edge.set_vertex(i, v)
if measurement is None:
measurement = (
edge.vertex(0).estimate().inverse() *
edge.vertex(1).estimate())
edge.set_measurement(measurement)
edge.set_information(information)
if robust_kernel is not None:
edge.set_robust_kernel(robust_kernel)
super().add_edge(edge)
def set_data(self, keyframes, loops):
super().clear()
anchor=None
for kf, *_ in loops:
if anchor is None or kf < anchor:
anchor = kf
for i, kf in enumerate(keyframes):
pose = g2o.Isometry3d(
kf.orientation,
kf.position)
fixed = i == 0
if anchor is not None:
fixed = kf <= anchor
self.add_vertex(kf.id, pose, fixed=fixed)
if kf.preceding_keyframe is not None:
self.add_edge(
vertices=(kf.preceding_keyframe.id, kf.id),
measurement=kf.preceding_constraint)
if (kf.reference_keyframe is not None and
kf.reference_keyframe != kf.preceding_keyframe):
self.add_edge(
vertices=(kf.reference_keyframe.id, kf.id),
measurement=kf.reference_constraint)
for kf, kf2, meas in loops:
self.add_edge((kf.id, kf2.id), measurement=meas)
def update_poses_and_points(
self, keyframes, correction=None, exclude=set()):
for kf in keyframes:
if len(exclude) > 0 and kf in exclude:
continue
uncorrected = g2o.Isometry3d(kf.orientation, kf.position)
if correction is None:
vertex = self.vertex(kf.id)
if vertex.fixed():
continue
corrected = vertex.estimate()
else:
corrected = uncorrected * correction
delta = uncorrected.inverse() * corrected
if (g2o.AngleAxis(delta.rotation()).angle() < 0.02 and
np.linalg.norm(delta.translation()) < 0.03): # 1°, 3cm
continue
for m in kf.measurements():
if m.from_triangulation():
old = m.mappoint.position
new = corrected * (uncorrected.inverse() * old)
m.mappoint.update_position(new)
# update normal ?
kf.update_pose(corrected)