-
Notifications
You must be signed in to change notification settings - Fork 1
/
grounding_eval_singlegpu.py
262 lines (210 loc) · 11.5 KB
/
grounding_eval_singlegpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from models.model_eval import ALBEF
from models.vit import interpolate_pos_embed
from models.tokenization_bert import BertTokenizer
import utils
from dataset import create_dataset, create_sampler, create_loader
from dataset.utils import collect_result, grounding_eval
from scheduler import create_scheduler
from optim import create_optimizer
from refTools.refer_python3 import REFER
from pdb import set_trace as breakpoint
from functools import partial
from models.vit import VisionTransformer
from models.xbert import BertConfig, BertModel
import torch
from torch import nn
import torch.nn.functional as F
def val(model, data_loader, tokenizer, device, gradcam_mode, block_num):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print_freq = 150
if gradcam_mode=='itm':
model.text_encoder.base_model.base_model.encoder.layer[block_num].crossattention.self.save_attention = True
result = []
for image, text, ref_ids, image_path in metric_logger.log_every(data_loader, print_freq, header):
image = image.to(device)
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
if gradcam_mode=='itm':
image_embeds = model.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
output = model.text_encoder(text_input.input_ids,
attention_mask = text_input.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
)
vl_embeddings = output.last_hidden_state[:,0,:]
vl_output = model.itm_head(vl_embeddings)
loss = vl_output[:,1].sum()
model.zero_grad()
loss.backward()
with torch.no_grad():
mask = text_input.attention_mask.view(text_input.attention_mask.size(0),1,-1,1,1)
grads = model.text_encoder.base_model.base_model.encoder.layer[block_num].crossattention.self.get_attn_gradients().detach()
cams = model.text_encoder.base_model.base_model.encoder.layer[block_num].crossattention.self.get_attention_map().detach()
cams = cams[:, :, :, 1:].reshape(image.size(0), 12, -1, 24, 24) * mask
grads = grads[:, :, :, 1:].clamp(min=0).reshape(image.size(0), 12, -1, 24, 24) * mask
gradcam = cams * grads
gradcam = gradcam.mean(1).mean(1)
elif gradcam_mode=='itc':
image_embeds = model.visual_encoder(image, register_blk=block_num)
image_feat = F.normalize(model.vision_proj(image_embeds[:,0,:]),dim=-1)
text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask,
return_dict = True, mode = 'text')
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(model.text_proj(text_embeds[:,0,:]),dim=-1)
sim = image_feat@text_feat.t()/model.temp
loss = sim.diag().sum()
model.zero_grad()
loss.backward()
with torch.no_grad():
grad = model.visual_encoder.blocks[block_num].attn.get_attn_gradients().detach()
cam = model.visual_encoder.blocks[block_num].attn.get_attention_map().detach()
cam = cam[:, :, 0, 1:].reshape(image.size(0), -1, 24, 24)
grad = grad[:, :, 0, 1:].reshape(image.size(0), -1, 24, 24).clamp(0)
gradcam = (cam * grad).mean(1)
for r_id, cam , path in zip(ref_ids, gradcam, image_path):
result.append({'ref_id':r_id.item(), 'pred':cam, 'image_path': path})
if gradcam_mode=='itm':
model.text_encoder.base_model.base_model.encoder.layer[block_num].crossattention.self.save_attention = False
return result
def main(args, config):
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating dataset")
grd_test_dataset = create_dataset('grounding', config)
datasets = [grd_test_dataset]
samplers = [None, None]
test_loader = create_loader(datasets,samplers,batch_size=[config['batch_size']], \
num_workers=[4], is_trains=[False], collate_fns=[None])[0]
tokenizer = BertTokenizer.from_pretrained(args.text_encoder)
## refcoco evaluation tools
refer = REFER(config['refcoco_data'], 'refcoco+', 'unc')
dets = json.load(open(config['det_file'],'r'))
#### Model ####
print("Creating model")
# config['test_file'] = ['/vislang/ziyan/data/refcoco+_val_new_path.json','/vislang/ziyan/data/refcoco+_test_new_path.json']
print(config['test_file'])
model = ALBEF(config = config, text_encoder=args.text_encoder, tokenizer=tokenizer)
model = model.to(device)
if os.path.isdir(args.checkpoint):
all_ = glob.glob('{}/*.pth'.format(args.checkpoint))
all_.sort()
for checkpoint in all_:
filename = 'epoch'+checkpoint[-6:-4]
final_result_file = os.path.join(args.result_dir, '%s.pth'%filename)
if os.path.isfile(final_result_file):
continue
# load pre-trained model
ckpt = torch.load(checkpoint, map_location='cpu')
state_dict = ckpt['model']
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],model.visual_encoder_m)
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
for key in list(state_dict.keys()):
if 'bert' in key:
encoder_key = key.replace('bert.','')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%checkpoint)
print(msg)
del ckpt
result = val(model, test_loader, tokenizer, device, args.gradcam_mode, args.block_num)
torch.save(result,final_result_file)
print('result file saved to %s'%final_result_file)
grounding_acc, mean_bbox = grounding_eval(result, dets, refer, alpha=0.5, mask_size=24, on_bbox = True)
log_stats = {**{f'{k}': v for k, v in grounding_acc.items()},
'epoch': checkpoint[-6:-4],
}
with open(os.path.join(args.result_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
grounding_acc, mean_point = grounding_eval(result, dets, refer, alpha=0.5, mask_size=24, on_bbox = False)
log_stats = {**{f'{k}': v for k, v in grounding_acc.items()},
'epoch': checkpoint[-6:-4],
}
with open(os.path.join(args.result_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
else:
filename = 'epoch00'
final_result_file = os.path.join(args.result_dir, '%s.pth'%filename)
if os.path.isfile(final_result_file):
return
# load pre-trained model
ckpt = torch.load(args.checkpoint, map_location='cpu')
state_dict = ckpt['model']
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],model.visual_encoder_m)
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
for key in list(state_dict.keys()):
if 'bert' in key:
encoder_key = key.replace('bert.','')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%args.checkpoint)
print(msg)
del ckpt
result = val(model, test_loader, tokenizer, device, args.gradcam_mode, args.block_num)
torch.save(result,final_result_file)
print('result file saved to %s'%final_result_file)
grounding_acc, mean_bbox = grounding_eval(result, dets, refer, alpha=0.5, mask_size=24, on_bbox = True)
log_stats = {**{f'{k}': v for k, v in grounding_acc.items()},
'epoch': '00',
}
with open(os.path.join(args.result_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
grounding_acc, mean_point = grounding_eval(result, dets, refer, alpha=0.5, mask_size=24, on_bbox = False)
log_stats = {**{f'{k}': v for k, v in grounding_acc.items()},
'epoch': '00',
}
with open(os.path.join(args.result_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Grounding.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--output_dir', default='output/RefCOCO')
parser.add_argument('--gradcam_mode', default='itm', choices=['itm','itc'])
parser.add_argument('--block_num', default=8, type=int)
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
# config['test_file'] = ['/vislang/ziyan/data/refcoco+_val_new_path.json','/vislang/ziyan/data/refcoco+_test_new_path.json']
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)