-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathplot_match_distrib.py
85 lines (70 loc) · 2.74 KB
/
plot_match_distrib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (C) 2019 Titus Cieslewski, RPG, University of Zurich, Switzerland
# You can contact the author at <titus at ifi dot uzh dot ch>
# Copyright (C) 2019 Michael Bloesch,
# Dept. of Computing, Imperial College London, United Kingdom
# Copyright (C) 2019 Davide Scaramuzza, RPG, University of Zurich, Switzerland
#
# This file is part of imips_open.
#
# imips_open is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# imips_open is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with imips_open. If not, see <http:#www.gnu.org/licenses/>.
from IPython.core import ultratb
import matplotlib.pyplot as plt
import numpy as np
import sys
import imips.cache as cache
import imips.flags as flags
import imips.hyperparams as hyperparams
FLAGS = flags.FLAGS
def plot(dashed=False):
print(hyperparams.methodEvalString())
_, true_inl, _, _, _ = cache.getOrEval()
true_inl = sorted(true_inl)
mscores = np.array(true_inl, dtype=float) / float(hyperparams.methodNPts())
yax = np.arange(len(mscores)).astype(float) / len(mscores)
if dashed:
style = '--'
else:
style = '-'
plt.step(mscores, np.flip(yax), linestyle=style,
label='%s: %.02f' % (hyperparams.label(), np.mean(mscores)),
color=hyperparams.methodColor())
if __name__ == '__main__':
sys.excepthook = ultratb.FormattedTB(mode='Verbose',
color_scheme='Linux', call_pdb=1)
print('\n\n%s\n\n' % hyperparams.shortString())
plt.figure(figsize=(5, 5))
if FLAGS.baseline == 'all':
for bl in ['', 'sift', 'surf', 'super', 'lfnet', 'orb']:
FLAGS.baseline = bl
if bl != '':
if FLAGS.eds == 'eu':
FLAGS.ds = 'eu'
for nps in [128, 500]:
FLAGS.baseline_num_ips = nps
plot(dashed=nps == 500)
else:
plot()
FLAGS.baseline = 'all'
else:
if FLAGS.baseline != '' and FLAGS.eds == 'eu':
FLAGS.ds = 'eu'
plot()
if hyperparams.evalDs() in ['kt', 'eu']:
plt.axvline(x=10./128., label='10 inliers at 128', color='black')
plt.grid()
plt.legend()
plt.xlabel('Matching score')
plt.ylabel('Fraction of pairs with higher matching score')
plt.ylim([0, 1])
plt.show()