-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathplot_val_metrics.py
65 lines (53 loc) · 2.07 KB
/
plot_val_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (C) 2019 Titus Cieslewski, RPG, University of Zurich, Switzerland
# You can contact the author at <titus at ifi dot uzh dot ch>
# Copyright (C) 2019 Michael Bloesch,
# Dept. of Computing, Imperial College London, United Kingdom
# Copyright (C) 2019 Davide Scaramuzza, RPG, University of Zurich, Switzerland
#
# This file is part of imips_open.
#
# imips_open is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# imips_open is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with imips_open. If not, see <http:#www.gnu.org/licenses/>.
import matplotlib.animation
import matplotlib.pyplot as plt
import numpy as np
import os
import imips.flags as flags
import imips.hyperparams as hyperparams
FLAGS = flags.FLAGS
def doPlot(_):
plt.clf()
path = hyperparams.trainStatsPath()
if os.path.exists(path):
stats = np.loadtxt(path)
if len(stats.shape) < 2:
stats = stats.reshape([1, stats.size])
plt.plot(stats[:, 0], stats[:, 1], label='Apparent inliers')
plt.plot(stats[:, 0], stats[:, 2], label='True inliers')
plt.plot(stats[:, 0], stats[:, 3], '--',
label='Apparent inliers (train)')
plt.plot(stats[:, 0], stats[:, 4], '--', label='True inliers (train)')
plt.grid()
plt.title(hyperparams.shortString())
plt.ylabel('counts')
plt.ylim(bottom=0)
plt.xlabel('training iterations')
plt.legend()
else:
plt.title('Checkpoint not yet around.')
if __name__ == '__main__':
fig = plt.figure()
doPlot(None)
ani = matplotlib.animation.FuncAnimation(
fig, doPlot, repeat=True, interval=1000)
plt.show()