-
Notifications
You must be signed in to change notification settings - Fork 27
/
key.go
948 lines (851 loc) · 23 KB
/
key.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
package cose
import (
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/elliptic"
"errors"
"fmt"
"math/big"
"reflect"
"strconv"
)
const (
KeyLabelOKPCurve int64 = -1
KeyLabelOKPX int64 = -2
KeyLabelOKPD int64 = -4
KeyLabelEC2Curve int64 = -1
KeyLabelEC2X int64 = -2
KeyLabelEC2Y int64 = -3
KeyLabelEC2D int64 = -4
KeyLabelSymmetricK int64 = -1
)
const (
keyLabelKeyType int64 = 1
keyLabelKeyID int64 = 2
keyLabelAlgorithm int64 = 3
keyLabelKeyOps int64 = 4
keyLabelBaseIV int64 = 5
)
// KeyOp represents a key_ops value used to restrict purposes for which a Key
// may be used.
//
// https://datatracker.ietf.org/doc/html/rfc8152#section-7.1
type KeyOp int64
const (
// Reserved value.
KeyOpReserved KeyOp = 0
// The key is used to create signatures. Requires private key fields.
KeyOpSign KeyOp = 1
// The key is used for verification of signatures.
KeyOpVerify KeyOp = 2
// The key is used for key transport encryption.
KeyOpEncrypt KeyOp = 3
// The key is used for key transport decryption. Requires private key fields.
KeyOpDecrypt KeyOp = 4
// The key is used for key wrap encryption.
KeyOpWrapKey KeyOp = 5
// The key is used for key wrap decryption.
KeyOpUnwrapKey KeyOp = 6
// The key is used for deriving keys. Requires private key fields.
KeyOpDeriveKey KeyOp = 7
// The key is used for deriving bits not to be used as a key. Requires
// private key fields.
KeyOpDeriveBits KeyOp = 8
// The key is used for creating MACs.
KeyOpMACCreate KeyOp = 9
// The key is used for validating MACs.
KeyOpMACVerify KeyOp = 10
)
// KeyOpFromString returns the KeyOp corresponding to the specified name.
// The values are taken from https://www.rfc-editor.org/rfc/rfc7517#section-4.3
func KeyOpFromString(val string) (KeyOp, bool) {
switch val {
case "sign":
return KeyOpSign, true
case "verify":
return KeyOpVerify, true
case "encrypt":
return KeyOpEncrypt, true
case "decrypt":
return KeyOpDecrypt, true
case "wrapKey":
return KeyOpWrapKey, true
case "unwrapKey":
return KeyOpUnwrapKey, true
case "deriveKey":
return KeyOpDeriveKey, true
case "deriveBits":
return KeyOpDeriveBits, true
default:
return KeyOpReserved, false
}
}
// String returns a string representation of the KeyType. Note does not
// represent a valid value of the corresponding serialized entry, and must not
// be used as such. (The values returned _mostly_ correspond to those accepted
// by KeyOpFromString, except for MAC create/verify, which are not defined by
// RFC7517).
func (ko KeyOp) String() string {
switch ko {
case KeyOpSign:
return "sign"
case KeyOpVerify:
return "verify"
case KeyOpEncrypt:
return "encrypt"
case KeyOpDecrypt:
return "decrypt"
case KeyOpWrapKey:
return "wrapKey"
case KeyOpUnwrapKey:
return "unwrapKey"
case KeyOpDeriveKey:
return "deriveKey"
case KeyOpDeriveBits:
return "deriveBits"
case KeyOpMACCreate:
return "MAC create"
case KeyOpMACVerify:
return "MAC verify"
case KeyOpReserved:
return "Reserved"
default:
return "unknown key_op value " + strconv.Itoa(int(ko))
}
}
// KeyType identifies the family of keys represented by the associated Key.
//
// https://datatracker.ietf.org/doc/html/rfc8152#section-13
type KeyType int64
const (
KeyTypeReserved KeyType = 0
KeyTypeOKP KeyType = 1
KeyTypeEC2 KeyType = 2
KeyTypeSymmetric KeyType = 4
)
// String returns a string representation of the KeyType. Note does not
// represent a valid value of the corresponding serialized entry, and must
// not be used as such.
func (kt KeyType) String() string {
switch kt {
case KeyTypeOKP:
return "OKP"
case KeyTypeEC2:
return "EC2"
case KeyTypeSymmetric:
return "Symmetric"
case KeyTypeReserved:
return "Reserved"
default:
return "unknown key type value " + strconv.Itoa(int(kt))
}
}
// Curve represents the EC2/OKP key's curve.
//
// https://datatracker.ietf.org/doc/html/rfc8152#section-13.1
type Curve int64
const (
// Reserved value
CurveReserved Curve = 0
// NIST P-256 also known as secp256r1
CurveP256 Curve = 1
// NIST P-384 also known as secp384r1
CurveP384 Curve = 2
// NIST P-521 also known as secp521r1
CurveP521 Curve = 3
// X25519 for use w/ ECDH only
CurveX25519 Curve = 4
// X448 for use w/ ECDH only
CurveX448 Curve = 5
// Ed25519 for use /w EdDSA only
CurveEd25519 Curve = 6
// Ed448 for use /w EdDSA only
CurveEd448 Curve = 7
)
// String returns a string representation of the Curve. Note does not
// represent a valid value of the corresponding serialized entry, and must
// not be used as such.
func (c Curve) String() string {
switch c {
case CurveP256:
return "P-256"
case CurveP384:
return "P-384"
case CurveP521:
return "P-521"
case CurveX25519:
return "X25519"
case CurveX448:
return "X448"
case CurveEd25519:
return "Ed25519"
case CurveEd448:
return "Ed448"
case CurveReserved:
return "Reserved"
default:
return "unknown curve value " + strconv.Itoa(int(c))
}
}
// Key represents a COSE_Key structure, as defined by RFC8152.
// Note: currently, this does NOT support RFC8230 (RSA algorithms).
type Key struct {
// Type identifies the family of keys for this structure, and thus,
// which of the key-type-specific parameters need to be set.
Type KeyType
// ID is the identification value matched to the kid in the message.
ID []byte
// Algorithm is used to restrict the algorithm that is used with the
// key. If it is set, the application MUST verify that it matches the
// algorithm for which the Key is being used.
Algorithm Algorithm
// Ops can be set to restrict the set of operations that the Key is used for.
Ops []KeyOp
// BaseIV is the Base IV to be xor-ed with Partial IVs.
BaseIV []byte
// Any additional parameter (label,value) pairs.
Params map[any]any
}
// NewKeyOKP returns a Key created using the provided Octet Key Pair data.
func NewKeyOKP(alg Algorithm, x, d []byte) (*Key, error) {
if alg != AlgorithmEdDSA {
return nil, fmt.Errorf("unsupported algorithm %q", alg)
}
key := &Key{
Type: KeyTypeOKP,
Algorithm: alg,
Params: map[any]any{
KeyLabelOKPCurve: CurveEd25519,
},
}
if x != nil {
key.Params[KeyLabelOKPX] = x
}
if d != nil {
key.Params[KeyLabelOKPD] = d
}
if err := key.validate(KeyOpReserved); err != nil {
return nil, err
}
return key, nil
}
// ParamBytes returns the value of the parameter with the given label, if it
// exists and is of type []byte or can be converted to []byte.
func (k *Key) ParamBytes(label any) ([]byte, bool) {
v, ok, err := decodeBytes(k.Params, label)
return v, ok && err == nil
}
// ParamInt returns the value of the parameter with the given label, if it
// exists and is of type int64 or can be converted to int64.
func (k *Key) ParamInt(label any) (int64, bool) {
v, ok, err := decodeInt(k.Params, label)
return v, ok && err == nil
}
// ParamUint returns the value of the parameter with the given label, if it
// exists and is of type uint64 or can be converted to uint64.
func (k *Key) ParamUint(label any) (uint64, bool) {
v, ok, err := decodeUint(k.Params, label)
return v, ok && err == nil
}
// ParamString returns the value of the parameter with the given label, if it
// exists and is of type string or can be converted to string.
func (k *Key) ParamString(label any) (string, bool) {
v, ok, err := decodeString(k.Params, label)
return v, ok && err == nil
}
// ParamBool returns the value of the parameter with the given label, if it
// exists and is of type bool or can be converted to bool.
func (k *Key) ParamBool(label any) (bool, bool) {
v, ok, err := decodeBool(k.Params, label)
return v, ok && err == nil
}
// OKP returns the Octet Key Pair parameters for the key.
func (k *Key) OKP() (crv Curve, x []byte, d []byte) {
v, ok := k.ParamInt(KeyLabelOKPCurve)
if ok {
crv = Curve(v)
}
x, _ = k.ParamBytes(KeyLabelOKPX)
d, _ = k.ParamBytes(KeyLabelOKPD)
return
}
// NewKeyEC2 returns a Key created using the provided elliptic curve key
// data.
func NewKeyEC2(alg Algorithm, x, y, d []byte) (*Key, error) {
var curve Curve
switch alg {
case AlgorithmES256:
curve = CurveP256
case AlgorithmES384:
curve = CurveP384
case AlgorithmES512:
curve = CurveP521
default:
return nil, fmt.Errorf("unsupported algorithm %q", alg)
}
key := &Key{
Type: KeyTypeEC2,
Algorithm: alg,
Params: map[any]any{
KeyLabelEC2Curve: curve,
},
}
if x != nil {
key.Params[KeyLabelEC2X] = x
}
if y != nil {
key.Params[KeyLabelEC2Y] = y
}
if d != nil {
key.Params[KeyLabelEC2D] = d
}
if err := key.validate(KeyOpReserved); err != nil {
return nil, err
}
return key, nil
}
// EC2 returns the Elliptic Curve parameters for the key.
func (k *Key) EC2() (crv Curve, x []byte, y, d []byte) {
v, ok := k.ParamInt(KeyLabelEC2Curve)
if ok {
crv = Curve(v)
}
x, _ = k.ParamBytes(KeyLabelEC2X)
y, _ = k.ParamBytes(KeyLabelEC2Y)
d, _ = k.ParamBytes(KeyLabelEC2D)
return
}
// NewKeySymmetric returns a Key created using the provided Symmetric key
// bytes.
func NewKeySymmetric(k []byte) *Key {
return &Key{
Type: KeyTypeSymmetric,
Params: map[any]any{
KeyLabelSymmetricK: k,
},
}
}
// Symmetric returns the Symmetric parameters for the key.
func (key *Key) Symmetric() (k []byte) {
k, _ = key.ParamBytes(KeyLabelSymmetricK)
return
}
// NewKeyFromPublic returns a Key created using the provided crypto.PublicKey.
// Supported key formats are: *ecdsa.PublicKey and ed25519.PublicKey
func NewKeyFromPublic(pub crypto.PublicKey) (*Key, error) {
switch vk := pub.(type) {
case *ecdsa.PublicKey:
alg := algorithmFromEllipticCurve(vk.Curve)
if alg == AlgorithmReserved {
return nil, fmt.Errorf("unsupported curve: %v", vk.Curve)
}
return NewKeyEC2(alg, vk.X.Bytes(), vk.Y.Bytes(), nil)
case ed25519.PublicKey:
return NewKeyOKP(AlgorithmEdDSA, []byte(vk), nil)
default:
return nil, ErrInvalidPubKey
}
}
// NewKeyFromPrivate returns a Key created using provided crypto.PrivateKey.
// Supported key formats are: *ecdsa.PrivateKey and ed25519.PrivateKey
func NewKeyFromPrivate(priv crypto.PrivateKey) (*Key, error) {
switch sk := priv.(type) {
case *ecdsa.PrivateKey:
alg := algorithmFromEllipticCurve(sk.Curve)
if alg == AlgorithmReserved {
return nil, fmt.Errorf("unsupported curve: %v", sk.Curve)
}
return NewKeyEC2(alg, sk.X.Bytes(), sk.Y.Bytes(), sk.D.Bytes())
case ed25519.PrivateKey:
return NewKeyOKP(AlgorithmEdDSA, []byte(sk[32:]), []byte(sk[:32]))
default:
return nil, ErrInvalidPrivKey
}
}
var (
// The following errors are used multiple times
// in Key.validate. We declare them here to avoid
// duplication. They are not considered public errors.
errCoordOverflow = fmt.Errorf("%w: overflowing coordinate", ErrInvalidKey)
errReqParamsMissing = fmt.Errorf("%w: required parameters missing", ErrInvalidKey)
errInvalidCurve = fmt.Errorf("%w: curve not supported for the given key type", ErrInvalidKey)
)
// Validate ensures that the parameters set inside the Key are internally
// consistent (e.g., that the key type is appropriate to the curve).
// It also checks that the key is valid for the requested operation.
func (k Key) validate(op KeyOp) error {
switch k.Type {
case KeyTypeEC2:
crv, x, y, d := k.EC2()
switch op {
case KeyOpVerify:
if len(x) == 0 || len(y) == 0 {
return ErrEC2NoPub
}
case KeyOpSign:
if len(d) == 0 {
return ErrNotPrivKey
}
}
if crv == CurveReserved || (len(x) == 0 && len(y) == 0 && len(d) == 0) {
return errReqParamsMissing
}
if size := curveSize(crv); size > 0 {
// RFC 8152 Section 13.1.1 says that x and y leading zero octets MUST be preserved,
// but the Go crypto/elliptic package trims them. So we relax the check
// here to allow for omitted leading zero octets, we will add them back
// when marshaling.
if len(x) > size || len(y) > size || len(d) > size {
return errCoordOverflow
}
}
switch crv {
case CurveX25519, CurveX448, CurveEd25519, CurveEd448:
return errInvalidCurve
default:
// ok -- a key may contain a currently unsupported curve
// see https://www.rfc-editor.org/rfc/rfc8152#section-13.1.1
}
case KeyTypeOKP:
crv, x, d := k.OKP()
switch op {
case KeyOpVerify:
if len(x) == 0 {
return ErrOKPNoPub
}
case KeyOpSign:
if len(d) == 0 {
return ErrNotPrivKey
}
}
if crv == CurveReserved || (len(x) == 0 && len(d) == 0) {
return errReqParamsMissing
}
if (len(x) > 0 && len(x) != ed25519.PublicKeySize) || (len(d) > 0 && len(d) != ed25519.SeedSize) {
return errCoordOverflow
}
switch crv {
case CurveP256, CurveP384, CurveP521:
return errInvalidCurve
default:
// ok -- a key may contain a currently unsupported curve
// see https://www.rfc-editor.org/rfc/rfc8152#section-13.2
}
case KeyTypeSymmetric:
k := k.Symmetric()
if len(k) == 0 {
return errReqParamsMissing
}
case KeyTypeReserved:
return fmt.Errorf("%w: kty value 0", ErrInvalidKey)
default:
// Unknown key type, we can't validate custom parameters.
}
// If Algorithm is set, it must match the specified key parameters.
if k.Algorithm != AlgorithmReserved {
expectedAlg, err := k.deriveAlgorithm()
if err != nil {
return err
}
if k.Algorithm != expectedAlg {
return fmt.Errorf(
"found algorithm %q (expected %q)",
k.Algorithm.String(),
expectedAlg.String(),
)
}
}
return nil
}
func (k Key) canOp(op KeyOp) bool {
if k.Ops == nil {
return true
}
for _, kop := range k.Ops {
if kop == op {
return true
}
}
return false
}
// MarshalCBOR encodes Key into a COSE_Key object.
func (k *Key) MarshalCBOR() ([]byte, error) {
tmp := map[any]any{
keyLabelKeyType: k.Type,
}
if k.ID != nil {
tmp[keyLabelKeyID] = k.ID
}
if k.Algorithm != AlgorithmReserved {
tmp[keyLabelAlgorithm] = k.Algorithm
}
if k.Ops != nil {
tmp[keyLabelKeyOps] = k.Ops
}
if k.BaseIV != nil {
tmp[keyLabelBaseIV] = k.BaseIV
}
existing := make(map[any]struct{}, len(k.Params))
for label, v := range k.Params {
lbl, ok := normalizeLabel(label)
if !ok {
return nil, fmt.Errorf("invalid label type %T", label)
}
if _, ok := existing[lbl]; ok {
return nil, fmt.Errorf("duplicate label %v", lbl)
}
existing[lbl] = struct{}{}
tmp[lbl] = v
}
if k.Type == KeyTypeEC2 {
// If EC2 key, ensure that x and y are padded to the correct size.
crv, x, y, _ := k.EC2()
if size := curveSize(crv); size > 0 {
if 0 < len(x) && len(x) < size {
tmp[KeyLabelEC2X] = append(make([]byte, size-len(x), size), x...)
}
if 0 < len(y) && len(y) < size {
tmp[KeyLabelEC2Y] = append(make([]byte, size-len(y), size), y...)
}
}
}
return encMode.Marshal(tmp)
}
// UnmarshalCBOR decodes a COSE_Key object into Key.
func (k *Key) UnmarshalCBOR(data []byte) error {
var tmp map[any]any
if err := decMode.Unmarshal(data, &tmp); err != nil {
return err
}
*k = Key{}
kty, exist, err := decodeInt(tmp, keyLabelKeyType)
if !exist {
return errors.New("kty: missing")
}
if err != nil {
return fmt.Errorf("kty: %w", err)
}
k.Type = KeyType(kty)
if k.Type == KeyTypeReserved {
return errors.New("kty: invalid value 0")
}
k.ID, _, err = decodeBytes(tmp, keyLabelKeyID)
if err != nil {
return fmt.Errorf("kid: %w", err)
}
alg, _, err := decodeInt(tmp, keyLabelAlgorithm)
if err != nil {
return fmt.Errorf("alg: %w", err)
}
k.Algorithm = Algorithm(alg)
key_ops, err := decodeSlice(tmp, keyLabelKeyOps)
if err != nil {
return fmt.Errorf("key_ops: %w", err)
}
if len(key_ops) > 0 {
k.Ops = make([]KeyOp, len(key_ops))
for i, op := range key_ops {
switch op := op.(type) {
case int64:
k.Ops[i] = KeyOp(op)
case string:
var ok bool
if k.Ops[i], ok = KeyOpFromString(op); !ok {
return fmt.Errorf("key_ops: unknown entry value %q", op)
}
default:
return fmt.Errorf("key_ops: invalid entry type %T", op)
}
}
}
k.BaseIV, _, err = decodeBytes(tmp, keyLabelBaseIV)
if err != nil {
return fmt.Errorf("base_iv: %w", err)
}
delete(tmp, keyLabelKeyType)
delete(tmp, keyLabelKeyID)
delete(tmp, keyLabelAlgorithm)
delete(tmp, keyLabelKeyOps)
delete(tmp, keyLabelBaseIV)
if len(tmp) > 0 {
k.Params = make(map[any]any, len(tmp))
for lbl, v := range tmp {
switch lbl := lbl.(type) {
case int64:
if (k.Type == KeyTypeEC2 || k.Type == KeyTypeOKP) &&
(lbl == KeyLabelEC2Curve || lbl == KeyLabelOKPCurve) {
v = Curve(v.(int64))
}
k.Params[lbl] = v
case string:
k.Params[lbl] = v
default:
return fmt.Errorf("invalid label type %T", lbl)
}
}
}
return k.validate(KeyOpReserved)
}
// PublicKey returns a crypto.PublicKey generated using Key's parameters.
func (k *Key) PublicKey() (crypto.PublicKey, error) {
if err := k.validate(KeyOpVerify); err != nil {
return nil, err
}
alg, err := k.deriveAlgorithm()
if err != nil {
return nil, err
}
switch alg {
case AlgorithmES256, AlgorithmES384, AlgorithmES512:
var curve elliptic.Curve
switch alg {
case AlgorithmES256:
curve = elliptic.P256()
case AlgorithmES384:
curve = elliptic.P384()
case AlgorithmES512:
curve = elliptic.P521()
}
_, x, y, _ := k.EC2()
pub := &ecdsa.PublicKey{Curve: curve, X: new(big.Int), Y: new(big.Int)}
pub.X.SetBytes(x)
pub.Y.SetBytes(y)
return pub, nil
case AlgorithmEdDSA:
_, x, _ := k.OKP()
return ed25519.PublicKey(x), nil
default:
return nil, ErrAlgorithmNotSupported
}
}
// PrivateKey returns a crypto.PrivateKey generated using Key's parameters.
// Compressed point is not supported for EC2 keys.
func (k *Key) PrivateKey() (crypto.PrivateKey, error) {
if err := k.validate(KeyOpSign); err != nil {
return nil, err
}
alg, err := k.deriveAlgorithm()
if err != nil {
return nil, err
}
switch alg {
case AlgorithmES256, AlgorithmES384, AlgorithmES512:
_, x, y, d := k.EC2()
if len(x) == 0 || len(y) == 0 {
return nil, fmt.Errorf("%w: compressed point not supported", ErrInvalidPrivKey)
}
var curve elliptic.Curve
switch alg {
case AlgorithmES256:
curve = elliptic.P256()
case AlgorithmES384:
curve = elliptic.P384()
case AlgorithmES512:
curve = elliptic.P521()
}
bx := new(big.Int).SetBytes(x)
by := new(big.Int).SetBytes(y)
bd := new(big.Int).SetBytes(d)
return &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{Curve: curve, X: bx, Y: by},
D: bd,
}, nil
case AlgorithmEdDSA:
_, x, d := k.OKP()
if len(x) == 0 {
return ed25519.NewKeyFromSeed(d), nil
}
buf := make([]byte, ed25519.PrivateKeySize)
copy(buf, d)
copy(buf[32:], x)
return ed25519.PrivateKey(buf), nil
default:
return nil, ErrAlgorithmNotSupported
}
}
// AlgorithmOrDefault returns the Algorithm associated with Key. If Key.Algorithm is
// set, that is what is returned. Otherwise, the algorithm is inferred using
// Key.Curve. This method does NOT validate that Key.Algorithm, if set, aligns
// with Key.Curve.
func (k *Key) AlgorithmOrDefault() (Algorithm, error) {
if k.Algorithm != AlgorithmReserved {
return k.Algorithm, nil
}
return k.deriveAlgorithm()
}
// Signer returns a Signer created using Key.
func (k *Key) Signer() (Signer, error) {
if !k.canOp(KeyOpSign) {
return nil, ErrOpNotSupported
}
priv, err := k.PrivateKey()
if err != nil {
return nil, err
}
alg, err := k.AlgorithmOrDefault()
if err != nil {
return nil, err
}
signer, ok := priv.(crypto.Signer)
if !ok {
return nil, ErrInvalidPrivKey
}
return NewSigner(alg, signer)
}
// Verifier returns a Verifier created using Key.
func (k *Key) Verifier() (Verifier, error) {
if !k.canOp(KeyOpVerify) {
return nil, ErrOpNotSupported
}
pub, err := k.PublicKey()
if err != nil {
return nil, err
}
alg, err := k.AlgorithmOrDefault()
if err != nil {
return nil, err
}
return NewVerifier(alg, pub)
}
// deriveAlgorithm derives the intended algorithm for the key from its curve.
// The deriviation is based on the recommendation in RFC8152 that SHA-256 is
// only used with P-256, etc. For other combinations, the Algorithm in the Key
// must be explicitly set,so that this derivation is not used.
func (k *Key) deriveAlgorithm() (Algorithm, error) {
switch k.Type {
case KeyTypeEC2:
crv, _, _, _ := k.EC2()
switch crv {
case CurveP256:
return AlgorithmES256, nil
case CurveP384:
return AlgorithmES384, nil
case CurveP521:
return AlgorithmES512, nil
default:
return AlgorithmReserved, fmt.Errorf(
"unsupported curve %q for key type EC2", crv.String())
}
case KeyTypeOKP:
crv, _, _ := k.OKP()
switch crv {
case CurveEd25519:
return AlgorithmEdDSA, nil
default:
return AlgorithmReserved, fmt.Errorf(
"unsupported curve %q for key type OKP", crv.String())
}
default:
// Symmetric algorithms are not supported in the current inmplementation.
return AlgorithmReserved, fmt.Errorf("unexpected key type %q", k.Type.String())
}
}
func algorithmFromEllipticCurve(c elliptic.Curve) Algorithm {
switch c {
case elliptic.P256():
return AlgorithmES256
case elliptic.P384():
return AlgorithmES384
case elliptic.P521():
return AlgorithmES512
default:
return AlgorithmReserved
}
}
func curveSize(crv Curve) int {
var bitSize int
switch crv {
case CurveP256:
bitSize = elliptic.P256().Params().BitSize
case CurveP384:
bitSize = elliptic.P384().Params().BitSize
case CurveP521:
bitSize = elliptic.P521().Params().BitSize
}
return (bitSize + 7) / 8
}
func decodeBytes(dic map[any]any, lbl any) (b []byte, ok bool, err error) {
val, ok := dic[lbl]
if !ok {
return nil, false, nil
}
if b, ok = val.([]byte); ok {
return b, true, nil
}
defer func() {
if r := recover(); r != nil {
err = fmt.Errorf("invalid type: expected []uint8, got %T", val)
}
}()
return reflect.ValueOf(val).Bytes(), true, nil
}
func decodeInt(dic map[any]any, lbl any) (int64, bool, error) {
val, ok := dic[lbl]
if !ok {
return 0, false, nil
}
if b, ok := val.(int64); ok {
return b, true, nil
}
if v := reflect.ValueOf(val); v.CanInt() {
return v.Int(), true, nil
}
return 0, true, fmt.Errorf("invalid type: expected int64, got %T", val)
}
func decodeUint(dic map[any]any, lbl any) (uint64, bool, error) {
val, ok := dic[lbl]
if !ok {
return 0, false, nil
}
if b, ok := val.(uint64); ok {
return b, true, nil
}
v := reflect.ValueOf(val)
if v.CanUint() {
return v.Uint(), true, nil
}
if v.CanInt() {
if b := v.Int(); b >= 0 {
return uint64(b), true, nil
}
}
return 0, true, fmt.Errorf("invalid type: expected uint64, got %T", val)
}
func decodeString(dic map[any]any, lbl any) (string, bool, error) {
val, ok := dic[lbl]
if !ok {
return "", false, nil
}
if b, ok := val.(string); ok {
return b, true, nil
}
if v := reflect.ValueOf(val); v.Kind() == reflect.String {
return v.String(), true, nil
}
return "", true, fmt.Errorf("invalid type: expected uint64, got %T", val)
}
func decodeBool(dic map[any]any, lbl any) (bool, bool, error) {
val, ok := dic[lbl]
if !ok {
return false, false, nil
}
if b, ok := val.(bool); ok {
return b, true, nil
}
if v := reflect.ValueOf(val); v.Kind() == reflect.Bool {
return v.Bool(), true, nil
}
return false, true, fmt.Errorf("invalid type: expected uint64, got %T", val)
}
func decodeSlice(dic map[any]any, lbl any) ([]any, error) {
v, ok := dic[lbl]
if !ok {
return nil, nil
}
arr, ok := v.([]any)
if !ok {
return nil, fmt.Errorf("invalid type: expected []any, got %T", v)
}
return arr, nil
}