-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdatasets.py
52 lines (37 loc) · 1.72 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import random
import os
import numpy as np
from torch.utils.data import Dataset
from PIL import Image
import torchvision.transforms as transforms
class DefocusDataset(Dataset):
def __init__(self, root='./datasets/CUHKDefocus/', mode="train"):
self.root = root
self.is_train = True if mode == 'train' else False
if 'CUHKDefocus' in self.root:
with open(os.path.join(root,'test.txt')) as f:
test_images = [s.strip() for s in f.readlines()]
if self.is_train:
self.images = sorted([ os.path.join(root,'image',x) for x in os.listdir(os.path.join(root,'image')) if x not in test_images ])
else:
if 'CUHKDefocus' in self.root:
self.images = [ os.path.join(root,'image',x) for x in test_images ]
else:
self.images = sorted([ os.path.join(root,'image',x) for x in os.listdir(os.path.join(root,'image'))])
self.transform = transforms.Compose([
transforms.Resize((320, 320), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
print('Dataset:%s'%(len(self.images)))
def __getitem__(self, index):
imgo = Image.open(self.images[index]).convert('RGB')
mask = Image.open(self.images[index].replace('image','gt').replace('jpg','png')).convert('L')
img = self.transform(imgo)
mask = np.asarray(mask)/255.
imgo = np.array(imgo)
if 'CUHKDefocus' in self.root:
mask = 1 - mask
return {"A": img, 'Ao':np.array(imgo), 'M': mask, 'name':self.images[index].split('/')[-1] }
def __len__(self):
return len(self.images)