-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
/
Copy pathblock_manager.py
505 lines (412 loc) · 20.9 KB
/
block_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
"""A block manager that manages token blocks."""
from typing import Dict, List, Optional
from typing import Sequence as GenericSequence
from typing import Tuple
from vllm.core.block.block_table import BlockTable
from vllm.core.block.cpu_gpu_block_allocator import CpuGpuBlockAllocator
from vllm.core.block.interfaces import Block
from vllm.core.block.prefix_caching_block import (ComputedBlocksTracker,
LastAccessBlocksTracker)
from vllm.core.block.utils import check_no_caching_or_swa_for_blockmgr_encdec
from vllm.core.interfaces import AllocStatus, BlockSpaceManager
from vllm.sequence import Sequence, SequenceGroup, SequenceStatus
from vllm.utils import Device
SeqId = int
EncoderSeqId = str
class SelfAttnBlockSpaceManager(BlockSpaceManager):
"""BlockSpaceManager which manages the allocation of KV cache.
It owns responsibility for allocation, swapping, allocating memory for
autoregressively-generated tokens, and other advanced features such as
prefix caching, forking/copy-on-write, and sliding-window memory allocation.
This class implements the design described in
https://github.com/vllm-project/vllm/pull/3492.
Lookahead slots
The block manager has the notion of a "lookahead slot". These are slots
in the KV cache that are allocated for a sequence. Unlike the other
allocated slots, the content of these slots is undefined -- the worker
may use the memory allocations in any way.
In practice, a worker could use these lookahead slots to run multiple
forward passes for a single scheduler invocation. Each successive
forward pass would write KV activations to the corresponding lookahead
slot. This allows low inter-token latency use-cases, where the overhead
of continuous batching scheduling is amortized over >1 generated tokens.
Speculative decoding uses lookahead slots to store KV activations of
proposal tokens.
See https://github.com/vllm-project/vllm/pull/3250 for more information
on lookahead scheduling.
Args:
block_size (int): The size of each memory block.
num_gpu_blocks (int): The number of memory blocks allocated on GPU.
num_cpu_blocks (int): The number of memory blocks allocated on CPU.
watermark (float, optional): The threshold used for memory swapping.
Defaults to 0.01.
sliding_window (Optional[int], optional): The size of the sliding
window. Defaults to None.
enable_caching (bool, optional): Flag indicating whether caching is
enabled. Defaults to False.
"""
def __init__(
self,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
watermark: float = 0.01,
sliding_window: Optional[int] = None,
enable_caching: bool = False,
) -> None:
self.block_size = block_size
self.num_total_gpu_blocks = num_gpu_blocks
self.num_total_cpu_blocks = num_cpu_blocks
self.sliding_window = sliding_window
# max_block_sliding_window is the max number of blocks that need to be
# allocated
self.max_block_sliding_window = None
if sliding_window is not None:
# +1 here because // rounds down
num_blocks = sliding_window // block_size + 1
# +1 here because the last block may not be full,
# and so the sequence stretches one more block at the beginning
# For example, if sliding_window is 3 and block_size is 4,
# we may need 2 blocks when the second block only holds 1 token.
self.max_block_sliding_window = num_blocks + 1
self.watermark = watermark
assert watermark >= 0.0
self.enable_caching = enable_caching
self.watermark_blocks = int(watermark * num_gpu_blocks)
self.block_allocator = CpuGpuBlockAllocator.create(
allocator_type="prefix_caching" if enable_caching else "naive",
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
block_size=block_size,
)
self.block_tables: Dict[SeqId, BlockTable] = {}
self.cross_block_tables: Dict[EncoderSeqId, BlockTable] = {}
self._computed_blocks_tracker = ComputedBlocksTracker(
self.block_allocator)
self._last_access_blocks_tracker = LastAccessBlocksTracker(
self.block_allocator)
def can_allocate(self,
seq_group: SequenceGroup,
num_lookahead_slots: int = 0) -> AllocStatus:
# FIXME(woosuk): Here we assume that all sequences in the group share
# the same prompt. This may not be true for preempted sequences.
check_no_caching_or_swa_for_blockmgr_encdec(self, seq_group)
seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
num_required_blocks = BlockTable.get_num_required_blocks(
seq.get_token_ids(),
block_size=self.block_size,
num_lookahead_slots=num_lookahead_slots,
)
if seq_group.is_encoder_decoder():
encoder_seq = seq_group.get_encoder_seq()
assert encoder_seq is not None
num_required_blocks += BlockTable.get_num_required_blocks(
encoder_seq.get_token_ids(),
block_size=self.block_size,
)
if self.max_block_sliding_window is not None:
num_required_blocks = min(num_required_blocks,
self.max_block_sliding_window)
num_free_gpu_blocks = self.block_allocator.get_num_free_blocks(
device=Device.GPU)
# Use watermark to avoid frequent cache eviction.
if (self.num_total_gpu_blocks - num_required_blocks <
self.watermark_blocks):
return AllocStatus.NEVER
if num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks:
return AllocStatus.OK
else:
return AllocStatus.LATER
def _allocate_sequence(self, seq: Sequence) -> BlockTable:
block_table = BlockTable(
block_size=self.block_size,
block_allocator=self.block_allocator,
max_block_sliding_window=self.max_block_sliding_window,
)
if seq.get_token_ids():
# Add blocks to the block table only if the sequence is non empty.
block_table.allocate(seq.get_token_ids())
return block_table
def allocate(self, seq_group: SequenceGroup) -> None:
# Allocate self-attention block tables for decoder sequences
waiting_seqs = seq_group.get_seqs(status=SequenceStatus.WAITING)
assert not (set(seq.seq_id for seq in waiting_seqs)
& self.block_tables.keys()), "block table already exists"
# NOTE: Here we assume that all sequences in the group have the same
# prompt.
seq = waiting_seqs[0]
block_table: BlockTable = self._allocate_sequence(seq)
self.block_tables[seq.seq_id] = block_table
# Track seq
self._computed_blocks_tracker.add_seq(seq.seq_id)
self._last_access_blocks_tracker.add_seq(seq.seq_id)
# Assign the block table for each sequence.
for seq in waiting_seqs[1:]:
self.block_tables[seq.seq_id] = block_table.fork()
# Track seq
self._computed_blocks_tracker.add_seq(seq.seq_id)
self._last_access_blocks_tracker.add_seq(seq.seq_id)
# Allocate cross-attention block table for encoder sequence
#
# NOTE: Here we assume that all sequences in the group have the same
# encoder prompt.
request_id = seq_group.request_id
assert (request_id
not in self.cross_block_tables), \
"block table already exists"
check_no_caching_or_swa_for_blockmgr_encdec(self, seq_group)
if seq_group.is_encoder_decoder():
encoder_seq = seq_group.get_encoder_seq()
assert encoder_seq is not None
block_table = self._allocate_sequence(encoder_seq)
self.cross_block_tables[request_id] = block_table
def can_append_slots(self, seq_group: SequenceGroup,
num_lookahead_slots: int) -> bool:
"""Determine if there is enough space in the GPU KV cache to continue
generation of the specified sequence group.
We use a worst-case heuristic: assume each touched block will require a
new allocation (either via CoW or new block). We can append slots if the
number of touched blocks is less than the number of free blocks.
"Lookahead slots" are slots that are allocated in addition to the slots
for known tokens. The contents of the lookahead slots are not defined.
This is used by speculative decoding when speculating future tokens.
"""
num_touched_blocks = 0
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
block_table = self.block_tables[seq.seq_id]
num_touched_blocks += (
block_table.get_num_blocks_touched_by_append_slots(
token_ids=block_table.get_unseen_token_ids(
seq.get_token_ids()),
num_lookahead_slots=num_lookahead_slots,
))
num_free_gpu_blocks = self.block_allocator.get_num_free_blocks(
Device.GPU)
return num_touched_blocks <= num_free_gpu_blocks
def append_slots(
self,
seq: Sequence,
num_lookahead_slots: int,
) -> List[Tuple[int, int]]:
block_table = self.block_tables[seq.seq_id]
block_table.append_token_ids(
token_ids=block_table.get_unseen_token_ids(seq.get_token_ids()),
num_lookahead_slots=num_lookahead_slots,
num_computed_slots=seq.data.get_num_computed_tokens(),
)
# Return any new copy-on-writes.
new_cows = self.block_allocator.clear_copy_on_writes()
return new_cows
def free(self, seq: Sequence) -> None:
seq_id = seq.seq_id
if seq_id not in self.block_tables:
# Already freed or haven't been scheduled yet.
return
# Update seq block ids with the latest access time
self._last_access_blocks_tracker.update_seq_blocks_last_access(
seq_id, self.block_tables[seq.seq_id].physical_block_ids)
# Untrack seq
self._last_access_blocks_tracker.remove_seq(seq_id)
self._computed_blocks_tracker.remove_seq(seq_id)
# Free table/blocks
self.block_tables[seq_id].free()
del self.block_tables[seq_id]
def free_cross(self, seq_group: SequenceGroup) -> None:
request_id = seq_group.request_id
if request_id not in self.cross_block_tables:
# Already freed or hasn't been scheduled yet.
return
self.cross_block_tables[request_id].free()
del self.cross_block_tables[request_id]
def get_block_table(self, seq: Sequence) -> List[int]:
block_ids = self.block_tables[seq.seq_id].physical_block_ids
return block_ids # type: ignore
def get_cross_block_table(self, seq_group: SequenceGroup) -> List[int]:
request_id = seq_group.request_id
assert request_id in self.cross_block_tables
block_ids = self.cross_block_tables[request_id].physical_block_ids
assert all(b is not None for b in block_ids)
return block_ids # type: ignore
def access_all_blocks_in_seq(self, seq: Sequence, now: float):
if self.enable_caching:
# Record the latest access time for the sequence. The actual update
# of the block ids is deferred to the sequence free(..) call, since
# only during freeing of block ids, the blocks are actually added to
# the evictor (which is when the most updated time is required)
# (This avoids expensive calls to mark_blocks_as_accessed(..))
self._last_access_blocks_tracker.update_last_access(
seq.seq_id, now)
def mark_blocks_as_computed(self, seq_group: SequenceGroup,
token_chunk_size: int):
# If prefix caching is enabled, mark immutable blocks as computed
# right after they have been scheduled (for prefill). This assumes
# the scheduler is synchronous so blocks are actually computed when
# scheduling the next batch.
self.block_allocator.mark_blocks_as_computed([])
def get_common_computed_block_ids(
self, seqs: List[Sequence]) -> GenericSequence[int]:
"""Determine which blocks for which we skip prefill.
With prefix caching we can skip prefill for previously-generated blocks.
Currently, the attention implementation only supports skipping cached
blocks if they are a contiguous prefix of cached blocks.
This method determines which blocks can be safely skipped for all
sequences in the sequence group.
"""
computed_seq_block_ids = []
for seq in seqs:
computed_seq_block_ids.append(
self._computed_blocks_tracker.
get_cached_computed_blocks_and_update(
seq.seq_id,
self.block_tables[seq.seq_id].physical_block_ids))
# NOTE(sang): This assumes seq_block_ids doesn't contain any None.
return self.block_allocator.get_common_computed_block_ids(
computed_seq_block_ids) # type: ignore
def fork(self, parent_seq: Sequence, child_seq: Sequence) -> None:
if parent_seq.seq_id not in self.block_tables:
# Parent sequence has either been freed or never existed.
return
src_block_table = self.block_tables[parent_seq.seq_id]
self.block_tables[child_seq.seq_id] = src_block_table.fork()
# Track child seq
self._computed_blocks_tracker.add_seq(child_seq.seq_id)
self._last_access_blocks_tracker.add_seq(child_seq.seq_id)
def can_swap_in(self, seq_group: SequenceGroup,
num_lookahead_slots: int) -> AllocStatus:
"""Returns the AllocStatus for the given sequence_group
with num_lookahead_slots.
Args:
sequence_group (SequenceGroup): The sequence group to swap in.
num_lookahead_slots (int): Number of lookahead slots used in
speculative decoding, default to 0.
Returns:
AllocStatus: The AllocStatus for the given sequence group.
"""
return self._can_swap(seq_group, Device.GPU, SequenceStatus.SWAPPED,
num_lookahead_slots)
def swap_in(self, seq_group: SequenceGroup) -> List[Tuple[int, int]]:
"""Returns the block id mapping (from CPU to GPU) generated by
swapping in the given seq_group with num_lookahead_slots.
Args:
seq_group (SequenceGroup): The sequence group to swap in.
Returns:
List[Tuple[int, int]]: The mapping of swapping block from CPU
to GPU.
"""
physical_block_id_mapping = []
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
blocks = self.block_tables[seq.seq_id].blocks
if len(blocks) == 0:
continue
seq_swap_mapping = self.block_allocator.swap(blocks=blocks,
src_device=Device.CPU,
dst_device=Device.GPU)
# Refresh the block ids of the table (post-swap)
self.block_tables[seq.seq_id].update(blocks)
seq_physical_block_id_mapping = {
self.block_allocator.get_physical_block_id(
Device.CPU, cpu_block_id):
self.block_allocator.get_physical_block_id(
Device.GPU, gpu_block_id)
for cpu_block_id, gpu_block_id in seq_swap_mapping.items()
}
physical_block_id_mapping.extend(
list(seq_physical_block_id_mapping.items()))
return physical_block_id_mapping
def can_swap_out(self, seq_group: SequenceGroup) -> bool:
"""Returns whether we can swap out the given sequence_group
with num_lookahead_slots.
Args:
seq_group (SequenceGroup): The sequence group to swap in.
num_lookahead_slots (int): Number of lookahead slots used in
speculative decoding, default to 0.
Returns:
bool: Whether it's possible to swap out current sequence group.
"""
alloc_status = self._can_swap(seq_group, Device.CPU,
SequenceStatus.RUNNING)
return alloc_status == AllocStatus.OK
def swap_out(self, seq_group: SequenceGroup) -> List[Tuple[int, int]]:
"""Returns the block id mapping (from GPU to CPU) generated by
swapping out the given sequence_group with num_lookahead_slots.
Args:
sequence_group (SequenceGroup): The sequence group to swap in.
Returns:
List[Tuple[int, int]]: The mapping of swapping block from
GPU to CPU.
"""
physical_block_id_mapping = []
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
blocks = self.block_tables[seq.seq_id].blocks
if len(blocks) == 0:
continue
seq_swap_mapping = self.block_allocator.swap(blocks=blocks,
src_device=Device.GPU,
dst_device=Device.CPU)
# Refresh the block ids of the table (post-swap)
self.block_tables[seq.seq_id].update(blocks)
seq_physical_block_id_mapping = {
self.block_allocator.get_physical_block_id(
Device.GPU, gpu_block_id):
self.block_allocator.get_physical_block_id(
Device.CPU, cpu_block_id)
for gpu_block_id, cpu_block_id in seq_swap_mapping.items()
}
physical_block_id_mapping.extend(
list(seq_physical_block_id_mapping.items()))
return physical_block_id_mapping
def get_num_free_gpu_blocks(self) -> int:
return self.block_allocator.get_num_free_blocks(Device.GPU)
def get_num_free_cpu_blocks(self) -> int:
return self.block_allocator.get_num_free_blocks(Device.CPU)
def get_prefix_cache_hit_rate(self, device: Device) -> float:
return self.block_allocator.get_prefix_cache_hit_rate(device)
def _can_swap(self,
seq_group: SequenceGroup,
device: Device,
status: SequenceStatus,
num_lookahead_slots: int = 0) -> AllocStatus:
"""Returns the AllocStatus for swapping in/out the given sequence_group
on to the 'device'.
Args:
sequence_group (SequenceGroup): The sequence group to swap in.
device (Device): device to swap the 'seq_group' on.
status (SequenceStatus): The status of sequence which is needed
for action. RUNNING for swap out and SWAPPED for swap in
num_lookahead_slots (int): Number of lookahead slots used in
speculative decoding, default to 0.
Returns:
AllocStatus: The AllocStatus for swapping in/out the given
sequence_group on to the 'device'.
"""
# First determine the number of blocks that will be touched by this
# swap. Then verify if there are available blocks in the device
# to perform the swap.
num_blocks_touched = 0
blocks: List[Block] = []
for seq in seq_group.get_seqs(status=status):
block_table = self.block_tables[seq.seq_id]
if block_table.blocks is not None:
# Compute the number blocks to touch for the tokens to be
# appended. This does NOT include the full blocks that need
# to be touched for the swap.
num_blocks_touched += \
block_table.get_num_blocks_touched_by_append_slots(
block_table.get_unseen_token_ids(seq.get_token_ids()),
num_lookahead_slots=num_lookahead_slots)
blocks.extend(block_table.blocks)
# Compute the number of full blocks to touch and add it to the
# existing count of blocks to touch.
num_blocks_touched += self.block_allocator.get_num_full_blocks_touched(
blocks, device=device)
watermark_blocks = 0
if device == Device.GPU:
watermark_blocks = self.watermark_blocks
if self.block_allocator.get_num_total_blocks(
device) < num_blocks_touched:
return AllocStatus.NEVER
elif self.block_allocator.get_num_free_blocks(
device) - num_blocks_touched >= watermark_blocks:
return AllocStatus.OK
else:
return AllocStatus.LATER