-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
/
Copy pathtest_correctness.py
455 lines (367 loc) · 15.4 KB
/
test_correctness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from itertools import cycle
import pytest
from vllm import SamplingParams
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
"model": "facebook/opt-125m",
# skip cuda graph creation for fast test.
"enforce_eager": True,
# Allow only 5 sequences of ~1024 tokens in worst case.
"block_size": 16,
"num_gpu_blocks_override": 5 * (64 + 1),
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{
"use_v2_block_manager": False
}])
@pytest.mark.parametrize("test_llm_kwargs", [{"use_v2_block_manager": True}])
@pytest.mark.parametrize("batch_size", [10])
@pytest.mark.parametrize("seed", [1])
def test_v1_v2_greedy_equality_with_preemption(baseline_llm_generator,
test_llm_generator, batch_size):
"""Verify block manager v2 produces same outputs as block manager v1, even
when there is preemption.
This constructs two LLM, each with limited number of GPU blocks. The limit
is decided such that as the sequences in the batch grow, sequences must be
preempted and removed from cache.
If the output token ids are equivalent, then we have confidence that the KV
cache is not corrupted in the v2 block manager.
NOTE: We want a significant number of generated tokens so that any incorrect
KV mapping has time to build up error.
"""
output_len = 1024
temperature = 0.0
# We want to ensure equality even with preemption.
# We force the total block size to be 1 + cdiv(output_len, block_size)
# so that only one sequence can fit at a time (once the sequences grow).
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
)
print('Getting token ids from block manager v1')
baseline_token_ids = get_token_ids_from_llm_generator(
baseline_llm_generator, prompts, sampling_params)
print('Getting token ids from block manager v2')
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
prompts, sampling_params)
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
test_token_ids):
assert expected_token_ids == actual_token_ids
assert baseline_token_ids == test_token_ids
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
"model": "facebook/opt-125m",
# skip cuda graph creation for fast test.
"enforce_eager": True,
# Use a large block size to trigger more copy-on-writes.
"block_size": 32,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{
"use_v2_block_manager": False
}])
@pytest.mark.parametrize("test_llm_kwargs", [{"use_v2_block_manager": True}])
@pytest.mark.parametrize("batch_size", [10])
@pytest.mark.parametrize("seed", [1])
def test_v1_v2_greedy_equality_with_cow(baseline_llm_generator,
test_llm_generator, batch_size):
"""Verify beam search equality with block manager v1 and v2.
This requires copy-on-writes; if the v1 and v2 output is the same, then
we have some confidence cow is working.
"""
output_len = 128
temperature = 0.0
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
use_beam_search=True,
best_of=2,
)
print('Getting token ids from block manager v1')
baseline_token_ids = get_token_ids_from_llm_generator(
baseline_llm_generator, prompts, sampling_params)
print('Getting token ids from block manager v2')
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
prompts, sampling_params)
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
test_token_ids):
assert expected_token_ids == actual_token_ids
assert baseline_token_ids == test_token_ids
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
"model": "facebook/opt-125m",
# Our prompts will generate 128 tokens; since the prompts themselves are
# small, we don't need much KV space beyond 128.
"max_model_len": 160,
# skip cuda graph creation for fast test.
"enforce_eager": True,
# Lookahead scheduling only supported in v2 block manager.
"use_v2_block_manager": True,
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
{
"block_size": 16,
# Allow only 2 sequences of ~128 tokens in worst case.
# Note 8 = 128/block_size
"num_gpu_blocks_override": 2 * (8 + 1),
},
{
"block_size": 8,
# Allow only 2 sequences of ~128 tokens in worst case.
# Note 16 = 128/block_size
"num_gpu_blocks_override": 2 * (16 + 1),
}
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{
"num_lookahead_slots": 0,
}])
@pytest.mark.parametrize(
"test_llm_kwargs",
[{
# We run one test with block_size < lookahead_slots, one test with
# block_size > lookahead_slots
"num_lookahead_slots": 10,
}])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("seed", [1])
def test_lookahead_greedy_equality_with_preemption(baseline_llm_generator,
test_llm_generator,
batch_size):
"""Verify vLLM produces the same output with greedy sampling, when lookahead
scheduling is used vs. not.
Lookahead scheduling is not expected to modify the output, as it simply
allocates empty slots ahead of the known token ids in a sliding fashion.
This test constrains the total number of blocks to force preemption. It also
varies the block size so that the lookahead size is less than and greater
than the block size.
"""
output_len = 128
temperature = 0.0
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
)
print('Getting token ids without lookahead scheduling')
baseline_token_ids = get_token_ids_from_llm_generator(
baseline_llm_generator, prompts, sampling_params)
print('Getting token ids with lookahead scheduling')
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
prompts, sampling_params)
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
test_token_ids):
assert expected_token_ids == actual_token_ids
assert baseline_token_ids == test_token_ids
@pytest.mark.parametrize(
"common_llm_kwargs",
[
{
# Use a small model for a fast test.
"model": "facebook/opt-125m",
# skip cuda graph creation for fast test.
"enforce_eager": True,
"enable_chunked_prefill": True,
"max_num_batched_tokens": 2,
"max_num_seqs": 2,
},
])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [
{
"use_v2_block_manager": False,
},
])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"use_v2_block_manager": True,
"num_lookahead_slots": 0,
},
{
"use_v2_block_manager": True,
"num_lookahead_slots": 5,
},
])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("seed", [1])
def test_chunked_prefill_block_manager_v2(baseline_llm_generator,
test_llm_generator, batch_size):
"""Verify that chunked prefill works with BlockManagerV2, with and without
lookahead scheduling.
"""
output_len = 32
temperature = 0.0
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
)
print('Getting token ids with BlockManagerV1')
baseline_token_ids = get_token_ids_from_llm_generator(
baseline_llm_generator, prompts, sampling_params)
print('Getting token ids with BlockManagerV2')
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
prompts, sampling_params)
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
test_token_ids):
assert expected_token_ids == actual_token_ids
assert baseline_token_ids == test_token_ids
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
"model": "facebook/opt-125m",
# skip cuda graph creation for fast test.
"enforce_eager": True,
# Allow only 5 sequences of ~1024 tokens in worst case.
"block_size": 16,
"num_gpu_blocks_override": 5 * (64 + 1),
# Enable prefill cache
"enable_prefix_caching": True,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{
"use_v2_block_manager": False
}])
@pytest.mark.parametrize("test_llm_kwargs", [{"use_v2_block_manager": True}])
@pytest.mark.parametrize("batch_size", [10])
@pytest.mark.parametrize("seed", [1])
def test_v1_v2_greedy_equality_prefix_caching_enabled_with_preemption(
baseline_llm_generator, test_llm_generator, batch_size):
"""Verify block manager v2 produces same outputs as block manager v1, even
when there is preemption.
This constructs two LLM, each with limited number of GPU blocks. The limit
is decided such that as the sequences in the batch grow, sequences must be
preempted and removed from cache.
If the output token ids are equivalent, then we have confidence that the KV
cache is not corrupted in the v2 block manager.
NOTE: We want a significant number of generated tokens so that any incorrect
KV mapping has time to build up error.
"""
output_len = 1024
temperature = 0.0
# We want to ensure equality even with preemption.
# We force the total block size to be 1 + cdiv(output_len, block_size)
# so that only one sequence can fit at a time (once the sequences grow).
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
)
print('Getting token ids from block manager v1')
baseline_token_ids = get_token_ids_from_llm_generator(
baseline_llm_generator, prompts, sampling_params)
print('Getting token ids from block manager v2')
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
prompts, sampling_params)
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
test_token_ids):
assert expected_token_ids == actual_token_ids
assert baseline_token_ids == test_token_ids
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
"model": "facebook/opt-125m",
# skip cuda graph creation for fast test.
"enforce_eager": True,
# Allow only 5 sequences of ~1024 tokens in worst case.
"block_size": 16,
"num_gpu_blocks_override": 5 * (64 + 1),
# Test APC in v2 block
"use_v2_block_manager": True,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{
"enable_prefix_caching": False
}])
@pytest.mark.parametrize("test_llm_kwargs", [{"enable_prefix_caching": True}])
@pytest.mark.parametrize("batch_size", [10])
@pytest.mark.parametrize("seed", [1])
def test_auto_prefix_caching_with_preemption(baseline_llm_generator,
test_llm_generator, batch_size):
"""Verify block manager v2 with auto prefix caching enabled produces same
outputs as auto prefix caching disabled, even when there is preemption.
This constructs two LLM, each with limited number of GPU blocks. The limit
is decided such that as the sequences in the batch grow, sequences must be
preempted and removed from cache.
If the output token ids are equivalent, then we have confidence that auto
prefix caching itself at least don't cause result error.
"""
output_len = 1024
temperature = 0.0
# We want to ensure equality even with preemption.
# We force the total block size to be 1 + cdiv(output_len, block_size)
# so that only one sequence can fit at a time (once the sequences grow).
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
)
print('Getting token ids with APC disabled')
baseline_token_ids = get_token_ids_from_llm_generator(
baseline_llm_generator, prompts, sampling_params)
print('Getting token ids with APC enabled')
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
prompts, sampling_params)
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
test_token_ids):
assert expected_token_ids == actual_token_ids
assert baseline_token_ids == test_token_ids
def get_token_ids_from_llm_generator(llm_generator, prompts, sampling_params):
for llm in llm_generator:
outputs = llm.generate(prompts, sampling_params, use_tqdm=True)
token_ids = [output.outputs[0].token_ids for output in outputs]
del llm
return token_ids