-
-
Notifications
You must be signed in to change notification settings - Fork 5.4k
/
Copy pathtest_multistep_correctness.py
613 lines (544 loc) · 20.2 KB
/
test_multistep_correctness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
"""The tests in this file verify end-to-end speculative decoding correctness.
This docstring details important information on the testing methodology.
Most of the tests rely on "greedy equality", where we expect the output of
speculative decoding on a sequence to exactly match the output of normal non-
speculative decoding.
Since speculative decoding with rejection sampling guarantees that the output
distribution matches the target model's output distribution (up to hardware
numerics, see https://arxiv.org/pdf/2302.01318.pdf), we can expect greedy
equality. This gives us good coverage of temp=0.
For temp>0, we rely on unit tests on the rejection sampler to verify that the
output distribution is the same with spec decode vs. no spec decode (this would
be prohibitively expensive to run with a real model).
NOTE: Speculative decoding's distribution equality requires that the measured
distributions of the target model and proposal model be deterministic given the
same input. vLLM largely guarantees this.
@cadedaniel has seen cases where the output probabilities of a draft/target
model change slightly with certain batch sizes or prompts, even with Torch
determinism flags set. It is unclear if this is a bug in vLLM, due to non-
determinism in on-device batched operations, a bug in vLLM's spec decode
implementation, or the "hardware numerics" limitations. Either way, rejection
sampling ensures the output distribution matches the target model, but it breaks
greedy-equality tests for those batch sizes/prompts.
"""
from itertools import cycle
import pytest
from transformers import AutoTokenizer
from vllm import SamplingParams
from .conftest import (get_output_from_llm_generator,
run_greedy_equality_correctness_test)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
# Note this is repeated in the test body; to initialize a tokenizer.
"model": "JackFram/llama-68m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
{
# Verify the detokenizer assertions in the test work when spec
# decode is disabled.
},
])
@pytest.mark.parametrize("test_llm_kwargs", [{}])
@pytest.mark.parametrize("batch_size", [1, 32])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_with_detokenization(test_llm_generator,
batch_size: int):
"""Run generation with speculative decoding on a batch. Verify the engine
generates the correct number of tokens (via ignore_eos=True), and that the
detokenization matches HF transformers.
"""
output_len = 32
temperature = 0.0
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
)
batch_tokens, batch_token_ids = get_output_from_llm_generator(
test_llm_generator, prompts, sampling_params)
# Expect a generation for each prompt in the batch.
assert len(batch_token_ids) == len(prompts)
# Expect each generation to have expected number of tokens (note ignore_eos
# is True).
assert [len(token_ids)
for token_ids in batch_token_ids] == ([output_len] * batch_size)
# Expect detokenized string to match.
tok = AutoTokenizer.from_pretrained("JackFram/llama-68m")
for actual_tokens, actual_token_ids in zip(batch_tokens, batch_token_ids):
expected_tokens = tok.decode(actual_token_ids)
print(f"{actual_token_ids=}")
assert actual_tokens.strip() == expected_tokens.strip()
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
# Note this is repeated in the test body; to initialize a tokenizer.
"model": "JackFram/llama-68m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Use AsyncLLM engine
"use_async": True,
}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("test_llm_kwargs", [{}])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_with_async_engine(test_llm_generator,
baseline_llm_generator,
batch_size: int):
"""Verify spec decode works well with async LLM engine.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=32,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Print spec metrics.
"disable_log_stats": False,
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
# Try two different tiny base models.
# Note that one is equal to the draft model, another isn't.
{
"model": "JackFram/llama-68m",
},
{
"model": "JackFram/llama-160m",
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize(
"output_len",
[
# Use long output len for the small model test.
1536,
])
@pytest.mark.parametrize("batch_size", [1])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_greedy_correctness_tiny_model_bs1(
baseline_llm_generator, test_llm_generator, batch_size: int,
output_len: int):
"""Verify greedy equality on a tiny model with batch size of one.
Since this test is cheaper than other e2e correctness tests, we generate
with a higher output_len.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Print spec metrics.
"disable_log_stats": False,
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
# Try two different tiny base models.
# Note that one is equal to the draft model, another isn't.
{
"model": "JackFram/llama-68m",
},
{
"model": "JackFram/llama-160m",
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize(
"output_len",
[
# Use small output len for fast test.
256,
])
@pytest.mark.parametrize("batch_size", [64])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_greedy_correctness_tiny_model_large_bs(
baseline_llm_generator, test_llm_generator, batch_size: int,
output_len: int):
"""Verify greedy equality on a tiny model and large batch size.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
# Try two different tiny base models.
# Note that one is equal to the draft model, another isn't.
{
"model": "JackFram/llama-68m",
},
{
"model": "JackFram/llama-160m",
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("max_output_len", [
256,
])
@pytest.mark.parametrize("batch_size", [32])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_greedy_correctness_tiny_model_large_bs_diff_output_len(
baseline_llm_generator, test_llm_generator, batch_size: int,
max_output_len: int):
"""Verify greedy equality on a tiny model, with a large batch size, and when
sampling respects the EOS token.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len,
force_output_len=False)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# A "real" model (not tiny).
"model": "meta-llama/Llama-2-7b-chat-hf",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Print spec metrics.
"disable_log_stats": False,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("batch_size", [1])
@pytest.mark.parametrize(
"output_len",
[
# Use decently long output len for a high quality test.
256,
])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_greedy_correctness_real_model_bs1(
baseline_llm_generator, test_llm_generator, batch_size: int,
output_len: int):
"""Verify greedy equality on a "real" model and batch size of 1. This is
separate from large BS tests to make identifying the source of bugs easier.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# A "real" model (not tiny).
"model": "meta-llama/Llama-2-7b-chat-hf",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Print spec metrics.
"disable_log_stats": False,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("batch_size", [32])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
64,
])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_greedy_correctness_real_model_large_bs(
baseline_llm_generator, test_llm_generator, batch_size: int,
output_len: int):
"""Verify greedy equality with a "real" model on a nontrivial batch size.
This is the closest test to a real production workload.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"block_size": 8,
# 2 for small prompt, 256//8 for generated.
"num_gpu_blocks_override": 2 + 256 // 8,
"max_model_len": (2 + 256 // 8) * 8,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [
{
"model": "JackFram/llama-160m",
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize(
"output_len",
[
# Use small output len for fast test.
256,
])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_e2e_greedy_correctness_with_preemption(
baseline_llm_generator, test_llm_generator, batch_size: int,
output_len: int):
"""Verify greedy equality, even when some sequences are preempted mid-
generation.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model": "JackFram/llama-160m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
# As of this writing, vLLM only compiles with these 3 block sizes by
# default.
{
"block_size": 8,
},
{
"block_size": 16,
},
{
"block_size": 32,
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_different_block_size(baseline_llm_generator,
test_llm_generator, batch_size: int,
output_len: int):
"""Verify greedy equality over different block sizes.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model": "JackFram/llama-160m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize(
"test_llm_kwargs",
[
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"speculative_max_model_len": 32,
},
])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize(
"output_len",
[
# This must be a good bit larger than speculative_max_model_len so that
# we can test the case where all seqs are skipped, but still small to
# ensure fast test.
64,
])
@pytest.mark.parametrize("seed", [1])
def test_skip_speculation(baseline_llm_generator, test_llm_generator,
batch_size: int, output_len: int):
"""Verify greedy equality when some (or all) sequences skip speculation.
We do this by setting the max model len of the draft model to an
artificially low value, such that when the sequences grow beyond it, they
are skipped in speculative decoding.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model": "JackFram/llama-160m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_disable_by_batch_size": 2,
},
])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("output_len", [10])
@pytest.mark.parametrize("seed", [1])
def test_disable_speculation(baseline_llm_generator, test_llm_generator,
batch_size: int, output_len: int):
"""Verify greedy equality when all sequences disable speculation.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model": "JackFram/llama-68m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize(
"test_llm_kwargs",
[
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": k,
}
# Try a range of common k, as well as large speculation.
for k in [1, 2, 3, 4, 5, 6, 7, 8, 9, 63]
])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_many_k(baseline_llm_generator, test_llm_generator, batch_size: int,
output_len: int):
"""Verify that speculative decoding produces exact equality to without spec
decode with many different values of k.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)