-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
/
Copy pathmoe_align_sum_kernels.cu
324 lines (284 loc) · 11.8 KB
/
moe_align_sum_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include "../cuda_compat.h"
#include "../dispatch_utils.h"
#define CEILDIV(x, y) (((x) + (y) - 1) / (y))
namespace vllm {
namespace moe {
namespace {
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
int32_t col) {
// don't worry about overflow because num_experts is relatively small
return row * total_col + col;
}
} // namespace
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids,
int32_t* sorted_token_ids,
int32_t* expert_ids,
int32_t* total_tokens_post_pad,
int32_t num_experts,
int32_t block_size, size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
extern __shared__ int32_t shared_mem[];
int32_t* tokens_cnts =
shared_mem; // 2d tensor with shape (blockDim.x + 1, num_experts)
int32_t* cumsum =
shared_mem +
(blockDim.x + 1) * num_experts; // 1d tensor with shape (num_experts + 1)
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are
* assigned to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
if (threadIdx.x < num_experts) {
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
}
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i - 1] +
CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
block_size) *
block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding
* blocks and stores the corresponding expert_id for each block.
*/
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
}
/**
* Each thread processes a token shard, calculating the index of each token
* after sorting by expert number. Given the example topk_ids =
* [0,1,2,1,2,3,0,3,4] and block_size = 4, then the output would be [0, 6, *,
* *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *], where * represents a
* padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
* processed by the expert with expert_id within the current thread's token
* shard.
*/
int32_t rank_post_pad =
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
}
}
// TODO(simon): this is temporarily adapted from
// https://github.com/sgl-project/sglang/commit/31548116a8dc8c6df7e146e0587335a59fc5b9d7
// we did this to unblock Deepseek V3 but there should be a better
// implementation to manage shared memory.
template <typename scalar_t>
__global__ void moe_align_block_size_global_mem_kernel(
scalar_t* __restrict__ topk_ids, int32_t* sorted_token_ids,
int32_t* expert_ids, int32_t* total_tokens_post_pad, int32_t num_experts,
int32_t block_size, size_t numel, int32_t* tokens_cnts, int32_t* cumsum) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are
* assigned to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
if (threadIdx.x < num_experts) {
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
}
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i - 1] +
CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
block_size) *
block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding
* blocks and stores the corresponding expert_id for each block.
*/
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
}
/**
* Each thread processes a token shard, calculating the index of each token
* after sorting by expert number. Given the example topk_ids =
* [0,1,2,1,2,3,0,3,4] and block_size = 4, then the output would be [0, 6, *,
* *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *], where * represents a
* padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
* processed by the expert with expert_id within the current thread's token
* shard.
*/
int32_t rank_post_pad =
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
}
}
template <typename scalar_t, int TOPK>
__global__ void moe_sum_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., topk, d]
const int d) {
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
scalar_t x = 0.0;
#pragma unroll
for (int k = 0; k < TOPK; ++k) {
x += VLLM_LDG(&input[token_idx * TOPK * d + k * d + idx]);
}
out[token_idx * d + idx] = x;
}
}
} // namespace moe
} // namespace vllm
void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size, torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// If we have very large number of experts, we can no longer use shared
// memory.
// TODO(simon): the right solution should be calculating the exact right
// amount of shared memory and use that. The num_experts >= 256 is just a
// temporary solution to unblock Deepseek V3.
if (num_experts >= 256) {
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_global_mem_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t mem_tokens_cnts =
((num_experts + 1) * num_experts) * sizeof(int32_t);
const int32_t mem_cumsum = (num_experts + 1) * sizeof(int32_t);
// allocate global memory
int32_t* tokens_cnts;
int32_t* cumsum;
cudaMalloc(&tokens_cnts, mem_tokens_cnts);
cudaMalloc(&cumsum, mem_cumsum);
auto kernel =
vllm::moe::moe_align_block_size_global_mem_kernel<scalar_t>;
kernel<<<1, num_thread, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel(), tokens_cnts, cumsum);
cudaFree(tokens_cnts);
cudaFree(cumsum);
});
} else {
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t shared_mem =
((num_thread + 1) * num_experts + (num_experts + 1)) *
sizeof(int32_t);
// set dynamic shared mem
auto kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem));
kernel<<<1, num_thread, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel());
});
}
}
void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
torch::Tensor& output) // [num_tokens, hidden_size]
{
const int hidden_size = input.size(-1);
const int num_tokens = output.numel() / hidden_size;
const int topk = input.size(1);
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(output));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (topk) {
case 2:
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_sum_kernel", [&] {
vllm::moe::moe_sum_kernel<scalar_t, 2><<<grid, block, 0, stream>>>(
output.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
hidden_size);
});
break;
case 3:
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_sum_kernel", [&] {
vllm::moe::moe_sum_kernel<scalar_t, 3><<<grid, block, 0, stream>>>(
output.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
hidden_size);
});
break;
case 4:
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_sum_kernel", [&] {
vllm::moe::moe_sum_kernel<scalar_t, 4><<<grid, block, 0, stream>>>(
output.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
hidden_size);
});
break;
default:
at::sum_out(output, input, 1);
break;
}
}