-
-
Notifications
You must be signed in to change notification settings - Fork 5.4k
/
Copy pathsupported_models.md
881 lines (782 loc) · 26.2 KB
/
supported_models.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
(supported-models)=
# List of Supported Models
vLLM supports generative and pooling models across various tasks.
If a model supports more than one task, you can set the task via the `--task` argument.
For each task, we list the model architectures that have been implemented in vLLM.
Alongside each architecture, we include some popular models that use it.
## Loading a Model
### HuggingFace Hub
By default, vLLM loads models from [HuggingFace (HF) Hub](https://huggingface.co/models).
To determine whether a given model is supported, you can check the `config.json` file inside the HF repository.
If the `"architectures"` field contains a model architecture listed below, then it should be supported in theory.
:::{tip}
The easiest way to check if your model is really supported at runtime is to run the program below:
```python
from vllm import LLM
# For generative models (task=generate) only
llm = LLM(model=..., task="generate") # Name or path of your model
output = llm.generate("Hello, my name is")
print(output)
# For pooling models (task={embed,classify,reward,score}) only
llm = LLM(model=..., task="embed") # Name or path of your model
output = llm.encode("Hello, my name is")
print(output)
```
If vLLM successfully returns text (for generative models) or hidden states (for pooling models), it indicates that your model is supported.
:::
Otherwise, please refer to [Adding a New Model](#new-model) for instructions on how to implement your model in vLLM.
Alternatively, you can [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) to request vLLM support.
### ModelScope
To use models from [ModelScope](https://www.modelscope.cn) instead of HuggingFace Hub, set an environment variable:
```shell
export VLLM_USE_MODELSCOPE=True
```
And use with `trust_remote_code=True`.
```python
from vllm import LLM
llm = LLM(model=..., revision=..., task=..., trust_remote_code=True)
# For generative models (task=generate) only
output = llm.generate("Hello, my name is")
print(output)
# For pooling models (task={embed,classify,reward,score}) only
output = llm.encode("Hello, my name is")
print(output)
```
## List of Text-only Language Models
### Generative Models
See [this page](#generative-models) for more information on how to use generative models.
#### Text Generation (`--task generate`)
:::{list-table}
:widths: 25 25 50 5 5
:header-rows: 1
- * Architecture
* Models
* Example HF Models
* [LoRA](#lora-adapter)
* [PP](#distributed-serving)
- * `AquilaForCausalLM`
* Aquila, Aquila2
* `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.
* ✅︎
* ✅︎
- * `ArcticForCausalLM`
* Arctic
* `Snowflake/snowflake-arctic-base`, `Snowflake/snowflake-arctic-instruct`, etc.
*
* ✅︎
- * `BaiChuanForCausalLM`
* Baichuan2, Baichuan
* `baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.
* ✅︎
* ✅︎
- * `BloomForCausalLM`
* BLOOM, BLOOMZ, BLOOMChat
* `bigscience/bloom`, `bigscience/bloomz`, etc.
*
* ✅︎
- * `BartForConditionalGeneration`
* BART
* `facebook/bart-base`, `facebook/bart-large-cnn`, etc.
*
*
- * `ChatGLMModel`
* ChatGLM
* `THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.
* ✅︎
* ✅︎
- * `CohereForCausalLM`, `Cohere2ForCausalLM`
* Command-R
* `CohereForAI/c4ai-command-r-v01`, `CohereForAI/c4ai-command-r7b-12-2024`, etc.
* ✅︎
* ✅︎
- * `DbrxForCausalLM`
* DBRX
* `databricks/dbrx-base`, `databricks/dbrx-instruct`, etc.
*
* ✅︎
- * `DeciLMForCausalLM`
* DeciLM
* `Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.
*
* ✅︎
- * `DeepseekForCausalLM`
* DeepSeek
* `deepseek-ai/deepseek-llm-67b-base`, `deepseek-ai/deepseek-llm-7b-chat` etc.
*
* ✅︎
- * `DeepseekV2ForCausalLM`
* DeepSeek-V2
* `deepseek-ai/DeepSeek-V2`, `deepseek-ai/DeepSeek-V2-Chat` etc.
*
* ✅︎
- * `DeepseekV3ForCausalLM`
* DeepSeek-V3
* `deepseek-ai/DeepSeek-V3-Base`, `deepseek-ai/DeepSeek-V3` etc.
*
* ✅︎
- * `ExaoneForCausalLM`
* EXAONE-3
* `LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc.
* ✅︎
* ✅︎
- * `FalconForCausalLM`
* Falcon
* `tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.
*
* ✅︎
- * `FalconMambaForCausalLM`
* FalconMamba
* `tiiuae/falcon-mamba-7b`, `tiiuae/falcon-mamba-7b-instruct`, etc.
* ✅︎
* ✅︎
- * `GemmaForCausalLM`
* Gemma
* `google/gemma-2b`, `google/gemma-7b`, etc.
* ✅︎
* ✅︎
- * `Gemma2ForCausalLM`
* Gemma2
* `google/gemma-2-9b`, `google/gemma-2-27b`, etc.
* ✅︎
* ✅︎
- * `GlmForCausalLM`
* GLM-4
* `THUDM/glm-4-9b-chat-hf`, etc.
* ✅︎
* ✅︎
- * `GPT2LMHeadModel`
* GPT-2
* `gpt2`, `gpt2-xl`, etc.
*
* ✅︎
- * `GPTBigCodeForCausalLM`
* StarCoder, SantaCoder, WizardCoder
* `bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, `WizardLM/WizardCoder-15B-V1.0`, etc.
* ✅︎
* ✅︎
- * `GPTJForCausalLM`
* GPT-J
* `EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.
*
* ✅︎
- * `GPTNeoXForCausalLM`
* GPT-NeoX, Pythia, OpenAssistant, Dolly V2, StableLM
* `EleutherAI/gpt-neox-20b`, `EleutherAI/pythia-12b`, `OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.
*
* ✅︎
- * `GraniteForCausalLM`
* Granite 3.0, Granite 3.1, PowerLM
* `ibm-granite/granite-3.0-2b-base`, `ibm-granite/granite-3.1-8b-instruct`, `ibm/PowerLM-3b`, etc.
* ✅︎
* ✅︎
- * `GraniteMoeForCausalLM`
* Granite 3.0 MoE, PowerMoE
* `ibm-granite/granite-3.0-1b-a400m-base`, `ibm-granite/granite-3.0-3b-a800m-instruct`, `ibm/PowerMoE-3b`, etc.
* ✅︎
* ✅︎
- * `GritLM`
* GritLM
* `parasail-ai/GritLM-7B-vllm`.
* ✅︎
* ✅︎
- * `InternLMForCausalLM`
* InternLM
* `internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.
* ✅︎
* ✅︎
- * `InternLM2ForCausalLM`
* InternLM2
* `internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.
* ✅︎
* ✅︎
- * `InternLM3ForCausalLM`
* InternLM3
* `internlm/internlm3-8b-instruct`, etc.
* ✅︎
* ✅︎
- * `JAISLMHeadModel`
* Jais
* `inceptionai/jais-13b`, `inceptionai/jais-13b-chat`, `inceptionai/jais-30b-v3`, `inceptionai/jais-30b-chat-v3`, etc.
*
* ✅︎
- * `JambaForCausalLM`
* Jamba
* `ai21labs/AI21-Jamba-1.5-Large`, `ai21labs/AI21-Jamba-1.5-Mini`, `ai21labs/Jamba-v0.1`, etc.
* ✅︎
* ✅︎
- * `LlamaForCausalLM`
* Llama 3.1, Llama 3, Llama 2, LLaMA, Yi
* `meta-llama/Meta-Llama-3.1-405B-Instruct`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `01-ai/Yi-34B`, etc.
* ✅︎
* ✅︎
- * `MambaForCausalLM`
* Mamba
* `state-spaces/mamba-130m-hf`, `state-spaces/mamba-790m-hf`, `state-spaces/mamba-2.8b-hf`, etc.
*
* ✅︎
- * `MiniCPMForCausalLM`
* MiniCPM
* `openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, `openbmb/MiniCPM-S-1B-sft`, etc.
* ✅︎
* ✅︎
- * `MiniCPM3ForCausalLM`
* MiniCPM3
* `openbmb/MiniCPM3-4B`, etc.
* ✅︎
* ✅︎
- * `MistralForCausalLM`
* Mistral, Mistral-Instruct
* `mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.
* ✅︎
* ✅︎
- * `MixtralForCausalLM`
* Mixtral-8x7B, Mixtral-8x7B-Instruct
* `mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.
* ✅︎
* ✅︎
- * `MPTForCausalLM`
* MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter
* `mosaicml/mpt-7b`, `mosaicml/mpt-7b-storywriter`, `mosaicml/mpt-30b`, etc.
*
* ✅︎
- * `NemotronForCausalLM`
* Nemotron-3, Nemotron-4, Minitron
* `nvidia/Minitron-8B-Base`, `mgoin/Nemotron-4-340B-Base-hf-FP8`, etc.
* ✅︎
* ✅︎
- * `OLMoForCausalLM`
* OLMo
* `allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc.
*
* ✅︎
- * `OLMo2ForCausalLM`
* OLMo2
* `allenai/OLMo2-7B-1124`, etc.
*
* ✅︎
- * `OLMoEForCausalLM`
* OLMoE
* `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc.
* ✅︎
* ✅︎
- * `OPTForCausalLM`
* OPT, OPT-IML
* `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.
*
* ✅︎
- * `OrionForCausalLM`
* Orion
* `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.
*
* ✅︎
- * `PhiForCausalLM`
* Phi
* `microsoft/phi-1_5`, `microsoft/phi-2`, etc.
* ✅︎
* ✅︎
- * `Phi3ForCausalLM`
* Phi-4, Phi-3
* `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc.
* ✅︎
* ✅︎
- * `Phi3SmallForCausalLM`
* Phi-3-Small
* `microsoft/Phi-3-small-8k-instruct`, `microsoft/Phi-3-small-128k-instruct`, etc.
*
* ✅︎
- * `PhiMoEForCausalLM`
* Phi-3.5-MoE
* `microsoft/Phi-3.5-MoE-instruct`, etc.
* ✅︎
* ✅︎
- * `PersimmonForCausalLM`
* Persimmon
* `adept/persimmon-8b-base`, `adept/persimmon-8b-chat`, etc.
*
* ✅︎
- * `QWenLMHeadModel`
* Qwen
* `Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.
* ✅︎
* ✅︎
- * `Qwen2ForCausalLM`
* QwQ, Qwen2
* `Qwen/QwQ-32B-Preview`, `Qwen/Qwen2-7B-Instruct`, `Qwen/Qwen2-7B`, etc.
* ✅︎
* ✅︎
- * `Qwen2MoeForCausalLM`
* Qwen2MoE
* `Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.
*
* ✅︎
- * `StableLmForCausalLM`
* StableLM
* `stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.
*
* ✅︎
- * `Starcoder2ForCausalLM`
* Starcoder2
* `bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.
*
* ✅︎
- * `SolarForCausalLM`
* Solar Pro
* `upstage/solar-pro-preview-instruct`, etc.
* ✅︎
* ✅︎
- * `TeleChat2ForCausalLM`
* TeleChat2
* `TeleAI/TeleChat2-3B`, `TeleAI/TeleChat2-7B`, `TeleAI/TeleChat2-35B`, etc.
* ✅︎
* ✅︎
- * `XverseForCausalLM`
* XVERSE
* `xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.
* ✅︎
* ✅︎
:::
:::{note}
Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096.
:::
### Pooling Models
See [this page](pooling-models) for more information on how to use pooling models.
:::{important}
Since some model architectures support both generative and pooling tasks,
you should explicitly specify the task type to ensure that the model is used in pooling mode instead of generative mode.
:::
#### Text Embedding (`--task embed`)
:::{list-table}
:widths: 25 25 50 5 5
:header-rows: 1
- * Architecture
* Models
* Example HF Models
* [LoRA](#lora-adapter)
* [PP](#distributed-serving)
- * `BertModel`
* BERT-based
* `BAAI/bge-base-en-v1.5`, etc.
*
*
- * `Gemma2Model`
* Gemma2-based
* `BAAI/bge-multilingual-gemma2`, etc.
*
* ✅︎
- * `GritLM`
* GritLM
* `parasail-ai/GritLM-7B-vllm`.
* ✅︎
* ✅︎
- * `LlamaModel`, `LlamaForCausalLM`, `MistralModel`, etc.
* Llama-based
* `intfloat/e5-mistral-7b-instruct`, etc.
* ✅︎
* ✅︎
- * `Qwen2Model`, `Qwen2ForCausalLM`
* Qwen2-based
* `ssmits/Qwen2-7B-Instruct-embed-base` (see note), `Alibaba-NLP/gte-Qwen2-7B-instruct` (see note), etc.
* ✅︎
* ✅︎
- * `RobertaModel`, `RobertaForMaskedLM`
* RoBERTa-based
* `sentence-transformers/all-roberta-large-v1`, `sentence-transformers/all-roberta-large-v1`, etc.
*
*
- * `XLMRobertaModel`
* XLM-RoBERTa-based
* `intfloat/multilingual-e5-large`, etc.
*
*
:::
:::{note}
`ssmits/Qwen2-7B-Instruct-embed-base` has an improperly defined Sentence Transformers config.
You should manually set mean pooling by passing `--override-pooler-config '{"pooling_type": "MEAN"}'`.
:::
:::{note}
Unlike base Qwen2, `Alibaba-NLP/gte-Qwen2-7B-instruct` uses bi-directional attention.
You can set `--hf-overrides '{"is_causal": false}'` to change the attention mask accordingly.
On the other hand, its 1.5B variant (`Alibaba-NLP/gte-Qwen2-1.5B-instruct`) uses causal attention
despite being described otherwise on its model card.
Regardless of the variant, you need to enable `--trust-remote-code` for the correct tokenizer to be
loaded. See [relevant issue on HF Transformers](https://github.com/huggingface/transformers/issues/34882).
:::
If your model is not in the above list, we will try to automatically convert the model using
{func}`~vllm.model_executor.models.adapters.as_embedding_model`. By default, the embeddings
of the whole prompt are extracted from the normalized hidden state corresponding to the last token.
#### Reward Modeling (`--task reward`)
:::{list-table}
:widths: 25 25 50 5 5
:header-rows: 1
- * Architecture
* Models
* Example HF Models
* [LoRA](#lora-adapter)
* [PP](#distributed-serving)
- * `InternLM2ForRewardModel`
* InternLM2-based
* `internlm/internlm2-1_8b-reward`, `internlm/internlm2-7b-reward`, etc.
* ✅︎
* ✅︎
- * `LlamaForCausalLM`
* Llama-based
* `peiyi9979/math-shepherd-mistral-7b-prm`, etc.
* ✅︎
* ✅︎
- * `Qwen2ForRewardModel`
* Qwen2-based
* `Qwen/Qwen2.5-Math-RM-72B`, etc.
* ✅︎
* ✅︎
- * `Qwen2ForProcessRewardModel`
* Qwen2-based
* `Qwen/Qwen2.5-Math-PRM-7B`, `Qwen/Qwen2.5-Math-PRM-72B`, etc.
* ✅︎
* ✅︎
:::
If your model is not in the above list, we will try to automatically convert the model using
{func}`~vllm.model_executor.models.adapters.as_reward_model`. By default, we return the hidden states of each token directly.
:::{important}
For process-supervised reward models such as `peiyi9979/math-shepherd-mistral-7b-prm`, the pooling config should be set explicitly,
e.g.: `--override-pooler-config '{"pooling_type": "STEP", "step_tag_id": 123, "returned_token_ids": [456, 789]}'`.
:::
#### Classification (`--task classify`)
:::{list-table}
:widths: 25 25 50 5 5
:header-rows: 1
- * Architecture
* Models
* Example HF Models
* [LoRA](#lora-adapter)
* [PP](#distributed-serving)
- * `JambaForSequenceClassification`
* Jamba
* `ai21labs/Jamba-tiny-reward-dev`, etc.
* ✅︎
* ✅︎
- * `Qwen2ForSequenceClassification`
* Qwen2-based
* `jason9693/Qwen2.5-1.5B-apeach`, etc.
* ✅︎
* ✅︎
:::
If your model is not in the above list, we will try to automatically convert the model using
{func}`~vllm.model_executor.models.adapters.as_classification_model`. By default, the class probabilities are extracted from the softmaxed hidden state corresponding to the last token.
#### Sentence Pair Scoring (`--task score`)
:::{list-table}
:widths: 25 25 50 5 5
:header-rows: 1
- * Architecture
* Models
* Example HF Models
* [LoRA](#lora-adapter)
* [PP](#distributed-serving)
- * `BertForSequenceClassification`
* BERT-based
* `cross-encoder/ms-marco-MiniLM-L-6-v2`, etc.
*
*
- * `RobertaForSequenceClassification`
* RoBERTa-based
* `cross-encoder/quora-roberta-base`, etc.
*
*
- * `XLMRobertaForSequenceClassification`
* XLM-RoBERTa-based
* `BAAI/bge-reranker-v2-m3`, etc.
*
*
:::
(supported-mm-models)=
## List of Multimodal Language Models
The following modalities are supported depending on the model:
- **T**ext
- **I**mage
- **V**ideo
- **A**udio
Any combination of modalities joined by `+` are supported.
- e.g.: `T + I` means that the model supports text-only, image-only, and text-with-image inputs.
On the other hand, modalities separated by `/` are mutually exclusive.
- e.g.: `T / I` means that the model supports text-only and image-only inputs, but not text-with-image inputs.
See [this page](#multimodal-inputs) on how to pass multi-modal inputs to the model.
:::{important}
To enable multiple multi-modal items per text prompt, you have to set `limit_mm_per_prompt` (offline inference)
or `--limit-mm-per-prompt` (online serving). For example, to enable passing up to 4 images per text prompt:
Offline inference:
```python
llm = LLM(
model="Qwen/Qwen2-VL-7B-Instruct",
limit_mm_per_prompt={"image": 4},
)
```
Online serving:
```bash
vllm serve Qwen/Qwen2-VL-7B-Instruct --limit-mm-per-prompt image=4
```
:::
:::{note}
vLLM currently only supports adding LoRA to the language backbone of multimodal models.
:::
### Generative Models
See [this page](#generative-models) for more information on how to use generative models.
#### Text Generation (`--task generate`)
:::{list-table}
:widths: 25 25 15 20 5 5 5
:header-rows: 1
- * Architecture
* Models
* Inputs
* Example HF Models
* [LoRA](#lora-adapter)
* [PP](#distributed-serving)
* [V1](gh-issue:8779)
- * `AriaForConditionalGeneration`
* Aria
* T + I<sup>+</sup>
* `rhymes-ai/Aria`
*
* ✅︎
* ✅︎
- * `Blip2ForConditionalGeneration`
* BLIP-2
* T + I<sup>E</sup>
* `Salesforce/blip2-opt-2.7b`, `Salesforce/blip2-opt-6.7b`, etc.
*
* ✅︎
* ✅︎
- * `ChameleonForConditionalGeneration`
* Chameleon
* T + I
* `facebook/chameleon-7b` etc.
*
* ✅︎
* ✅︎
- * `DeepseekVLV2ForCausalLM`
* DeepSeek-VL2
* T + I<sup>+</sup>
* `deepseek-ai/deepseek-vl2-tiny`, `deepseek-ai/deepseek-vl2-small`, `deepseek-ai/deepseek-vl2` etc. (see note)
*
* ✅︎
* ✅︎
- * `FuyuForCausalLM`
* Fuyu
* T + I
* `adept/fuyu-8b` etc.
*
* ✅︎
* ✅︎
- * `ChatGLMModel`
* GLM-4V
* T + I
* `THUDM/glm-4v-9b` etc.
* ✅︎
* ✅︎
*
- * `H2OVLChatModel`
* H2OVL
* T + I<sup>E+</sup>
* `h2oai/h2ovl-mississippi-800m`, `h2oai/h2ovl-mississippi-2b`, etc.
*
* ✅︎
*
- * `Idefics3ForConditionalGeneration`
* Idefics3
* T + I
* `HuggingFaceM4/Idefics3-8B-Llama3` etc.
* ✅︎
*
*
- * `InternVLChatModel`
* InternVL 2.5, Mono-InternVL, InternVL 2.0
* T + I<sup>E+</sup>
* `OpenGVLab/InternVL2_5-4B`, `OpenGVLab/Mono-InternVL-2B`, `OpenGVLab/InternVL2-4B`, etc.
*
* ✅︎
* ✅︎
- * `LlavaForConditionalGeneration`
* LLaVA-1.5
* T + I<sup>E+</sup>
* `llava-hf/llava-1.5-7b-hf`, `TIGER-Lab/Mantis-8B-siglip-llama3` (see note), etc.
*
* ✅︎
* ✅︎
- * `LlavaNextForConditionalGeneration`
* LLaVA-NeXT
* T + I<sup>E+</sup>
* `llava-hf/llava-v1.6-mistral-7b-hf`, `llava-hf/llava-v1.6-vicuna-7b-hf`, etc.
*
* ✅︎
* ✅︎
- * `LlavaNextVideoForConditionalGeneration`
* LLaVA-NeXT-Video
* T + V
* `llava-hf/LLaVA-NeXT-Video-7B-hf`, etc.
*
* ✅︎
* ✅︎
- * `LlavaOnevisionForConditionalGeneration`
* LLaVA-Onevision
* T + I<sup>+</sup> + V<sup>+</sup>
* `llava-hf/llava-onevision-qwen2-7b-ov-hf`, `llava-hf/llava-onevision-qwen2-0.5b-ov-hf`, etc.
*
* ✅︎
* ✅︎
- * `MiniCPMO`
* MiniCPM-O
* T + I<sup>E+</sup> + V<sup>E+</sup> + A<sup>E+</sup>
* `openbmb/MiniCPM-o-2_6`, etc.
* ✅︎
* ✅︎
*
- * `MiniCPMV`
* MiniCPM-V
* T + I<sup>E+</sup> + V<sup>E+</sup>
* `openbmb/MiniCPM-V-2` (see note), `openbmb/MiniCPM-Llama3-V-2_5`, `openbmb/MiniCPM-V-2_6`, etc.
* ✅︎
* ✅︎
*
- * `MllamaForConditionalGeneration`
* Llama 3.2
* T + I<sup>+</sup>
* `meta-llama/Llama-3.2-90B-Vision-Instruct`, `meta-llama/Llama-3.2-11B-Vision`, etc.
*
*
*
- * `MolmoForCausalLM`
* Molmo
* T + I
* `allenai/Molmo-7B-D-0924`, `allenai/Molmo-72B-0924`, etc.
* ✅︎
* ✅︎
* ✅︎
- * `NVLM_D_Model`
* NVLM-D 1.0
* T + I<sup>E+</sup>
* `nvidia/NVLM-D-72B`, etc.
*
* ✅︎
* ✅︎
- * `PaliGemmaForConditionalGeneration`
* PaliGemma, PaliGemma 2
* T + I<sup>E</sup>
* `google/paligemma-3b-pt-224`, `google/paligemma-3b-mix-224`, `google/paligemma2-3b-ft-docci-448`, etc.
*
* ✅︎
*
- * `Phi3VForCausalLM`
* Phi-3-Vision, Phi-3.5-Vision
* T + I<sup>E+</sup>
* `microsoft/Phi-3-vision-128k-instruct`, `microsoft/Phi-3.5-vision-instruct`, etc.
*
* ✅︎
* ✅︎
- * `PixtralForConditionalGeneration`
* Pixtral
* T + I<sup>+</sup>
* `mistralai/Pixtral-12B-2409`, `mistral-community/pixtral-12b` (see note), etc.
*
* ✅︎
* ✅︎
- * `QWenLMHeadModel`
* Qwen-VL
* T + I<sup>E+</sup>
* `Qwen/Qwen-VL`, `Qwen/Qwen-VL-Chat`, etc.
* ✅︎
* ✅︎
* ✅︎
- * `Qwen2AudioForConditionalGeneration`
* Qwen2-Audio
* T + A<sup>+</sup>
* `Qwen/Qwen2-Audio-7B-Instruct`
*
* ✅︎
* ✅︎
- * `Qwen2VLForConditionalGeneration`
* QVQ, Qwen2-VL
* T + I<sup>E+</sup> + V<sup>E+</sup>
* `Qwen/QVQ-72B-Preview`, `Qwen/Qwen2-VL-7B-Instruct`, `Qwen/Qwen2-VL-72B-Instruct`, etc.
* ✅︎
* ✅︎
* ✅︎
- * `UltravoxModel`
* Ultravox
* T + A<sup>E+</sup>
* `fixie-ai/ultravox-v0_3`
*
* ✅︎
* ✅︎
:::
<sup>E</sup> Pre-computed embeddings can be inputted for this modality.
<sup>+</sup> Multiple items can be inputted per text prompt for this modality.
:::{note}
To use `DeepSeek-VL2` series models, you have to pass `--hf_overrides '{"architectures": ["DeepseekVLV2ForCausalLM"]}'` when running vLLM.
:::
:::{note}
To use `TIGER-Lab/Mantis-8B-siglip-llama3`, you have to pass `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` when running vLLM.
:::
:::{note}
The official `openbmb/MiniCPM-V-2` doesn't work yet, so we need to use a fork (`HwwwH/MiniCPM-V-2`) for now.
For more details, please see: <gh-pr:4087#issuecomment-2250397630>
:::
:::{note}
The chat template for Pixtral-HF is incorrect (see [discussion](https://huggingface.co/mistral-community/pixtral-12b/discussions/22)).
A corrected version is available at <gh-file:examples/template_pixtral_hf.jinja>.
:::
### Pooling Models
See [this page](pooling-models) for more information on how to use pooling models.
:::{important}
Since some model architectures support both generative and pooling tasks,
you should explicitly specify the task type to ensure that the model is used in pooling mode instead of generative mode.
:::
#### Text Embedding (`--task embed`)
Any text generation model can be converted into an embedding model by passing `--task embed`.
:::{note}
To get the best results, you should use pooling models that are specifically trained as such.
:::
The following table lists those that are tested in vLLM.
:::{list-table}
:widths: 25 25 15 25 5 5
:header-rows: 1
- * Architecture
* Models
* Inputs
* Example HF Models
* [LoRA](#lora-adapter)
* [PP](#distributed-serving)
- * `LlavaNextForConditionalGeneration`
* LLaVA-NeXT-based
* T / I
* `royokong/e5-v`
*
* ✅︎
- * `Phi3VForCausalLM`
* Phi-3-Vision-based
* T + I
* `TIGER-Lab/VLM2Vec-Full`
* 🚧
* ✅︎
- * `Qwen2VLForConditionalGeneration`
* Qwen2-VL-based
* T + I
* `MrLight/dse-qwen2-2b-mrl-v1`
*
* ✅︎
:::
_________________
## Model Support Policy
At vLLM, we are committed to facilitating the integration and support of third-party models within our ecosystem. Our approach is designed to balance the need for robustness and the practical limitations of supporting a wide range of models. Here’s how we manage third-party model support:
1. **Community-Driven Support**: We encourage community contributions for adding new models. When a user requests support for a new model, we welcome pull requests (PRs) from the community. These contributions are evaluated primarily on the sensibility of the output they generate, rather than strict consistency with existing implementations such as those in transformers. **Call for contribution:** PRs coming directly from model vendors are greatly appreciated!
2. **Best-Effort Consistency**: While we aim to maintain a level of consistency between the models implemented in vLLM and other frameworks like transformers, complete alignment is not always feasible. Factors like acceleration techniques and the use of low-precision computations can introduce discrepancies. Our commitment is to ensure that the implemented models are functional and produce sensible results.
:::{tip}
When comparing the output of `model.generate` from HuggingFace Transformers with the output of `llm.generate` from vLLM, note that the former reads the model's generation config file (i.e., [generation_config.json](https://github.com/huggingface/transformers/blob/19dabe96362803fb0a9ae7073d03533966598b17/src/transformers/generation/utils.py#L1945)) and applies the default parameters for generation, while the latter only uses the parameters passed to the function. Ensure all sampling parameters are identical when comparing outputs.
:::
3. **Issue Resolution and Model Updates**: Users are encouraged to report any bugs or issues they encounter with third-party models. Proposed fixes should be submitted via PRs, with a clear explanation of the problem and the rationale behind the proposed solution. If a fix for one model impacts another, we rely on the community to highlight and address these cross-model dependencies. Note: for bugfix PRs, it is good etiquette to inform the original author to seek their feedback.
4. **Monitoring and Updates**: Users interested in specific models should monitor the commit history for those models (e.g., by tracking changes in the main/vllm/model_executor/models directory). This proactive approach helps users stay informed about updates and changes that may affect the models they use.
5. **Selective Focus**: Our resources are primarily directed towards models with significant user interest and impact. Models that are less frequently used may receive less attention, and we rely on the community to play a more active role in their upkeep and improvement.
Through this approach, vLLM fosters a collaborative environment where both the core development team and the broader community contribute to the robustness and diversity of the third-party models supported in our ecosystem.
Note that, as an inference engine, vLLM does not introduce new models. Therefore, all models supported by vLLM are third-party models in this regard.
We have the following levels of testing for models:
1. **Strict Consistency**: We compare the output of the model with the output of the model in the HuggingFace Transformers library under greedy decoding. This is the most stringent test. Please refer to [models tests](https://github.com/vllm-project/vllm/blob/main/tests/models) for the models that have passed this test.
2. **Output Sensibility**: We check if the output of the model is sensible and coherent, by measuring the perplexity of the output and checking for any obvious errors. This is a less stringent test.
3. **Runtime Functionality**: We check if the model can be loaded and run without errors. This is the least stringent test. Please refer to [functionality tests](gh-dir:tests) and [examples](gh-dir:main/examples) for the models that have passed this test.
4. **Community Feedback**: We rely on the community to provide feedback on the models. If a model is broken or not working as expected, we encourage users to raise issues to report it or open pull requests to fix it. The rest of the models fall under this category.