-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
/
Copy pathlayers.py
1191 lines (1037 loc) · 43.3 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable=unused-argument
import math
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union, cast
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig
from vllm.adapter_commons.layers import AdapterMapping
from vllm.config import LoRAConfig
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce,
tensor_model_parallel_gather)
from vllm.distributed.utils import divide
# yapf: disable
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearBase,
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
# yapf: enable
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.rotary_embedding import (
LinearScalingRotaryEmbedding, RotaryEmbedding)
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.platforms import current_platform
if TYPE_CHECKING:
from vllm.lora.punica_wrapper import PunicaWrapperBase
def _get_lora_device(base_layer: nn.Module) -> torch.device:
# code borrowed from https://github.com/fmmoret/vllm/blob/fm-support-lora-on-quantized-models/vllm/lora/layers.py#L34
"""Returns the device for where to place the LoRA tensors."""
# unquantizedLinear
if hasattr(base_layer, "weight"):
return base_layer.weight.device
# Compressed Tensor
elif hasattr(base_layer, "weight_packed"):
return base_layer.weight_packed.device
# GPTQ/AWQ
elif hasattr(base_layer, "qweight"):
return base_layer.qweight.device
# marlin
elif hasattr(base_layer, "B"):
return base_layer.B.device
else:
raise ValueError(f"Unsupported base layer: {base_layer}")
def _not_fully_sharded_can_replace(can_replace):
"""
decorator which adds the condition of not using fully sharded loras
intended to wrap can_replace_layer()
"""
def dec(*args, **kwargs):
decorate = kwargs.pop("decorate") if "decorate" in kwargs else True
condition = (not kwargs["lora_config"].fully_sharded_loras
if decorate else True)
return can_replace(*args, **kwargs) and condition
return dec
@dataclass
class LoRAMapping(AdapterMapping):
is_prefill: bool = False
class BaseLayerWithLoRA(nn.Module):
def slice_lora_a(
self, lora_a: Union[torch.Tensor, List[Union[torch.Tensor, None]]]
) -> Union[torch.Tensor, List[Union[torch.Tensor, None]]]:
"""Slice lora a if splitting for tensor parallelism."""
...
def slice_lora_b(
self, lora_b: Union[torch.Tensor, List[Union[torch.Tensor, None]]]
) -> Union[torch.Tensor, List[Union[torch.Tensor, None]]]:
"""Slice lora b if splitting with tensor parallelism."""
...
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
"""Initializes lora matrices."""
...
def reset_lora(self, index: int):
"""Resets the lora weights at index back to 0."""
...
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
bias: Optional[torch.Tensor] = None,
):
"""Overwrites lora tensors at index."""
...
def set_mapping(
self,
punica_wrapper,
):
self.punica_wrapper: PunicaWrapperBase = punica_wrapper
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
"""Returns True if the layer can be replaced by this LoRA layer."""
raise NotImplementedError
class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: VocabParallelEmbedding) -> None:
super().__init__()
self.base_layer = base_layer
self.embeddings_slice: Optional[Tuple[int, int]]
self.embeddings_weights: Optional[torch.Tensor]
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
if self.base_layer.num_added_embeddings_per_partition > 0:
# We can start adding lora weights
self.embeddings_weights = self.base_layer.weight.data[
self.base_layer.num_org_embeddings_per_partition:self.
base_layer.num_org_embeddings_per_partition +
self.base_layer.num_added_embeddings_per_partition]
self.embeddings_slice = (
self.base_layer.shard_indices.added_vocab_start_index -
self.base_layer.org_vocab_size,
self.base_layer.shard_indices.added_vocab_end_index -
self.base_layer.org_vocab_size)
self.base_layer.weight.data[
self.base_layer.num_org_embeddings_per_partition:].fill_(0)
else:
self.embeddings_slice = None
self.embeddings_weights = None
self.embeddings_tensors = torch.zeros(
(
max_loras,
lora_config.lora_extra_vocab_size,
self.base_layer.embedding_dim,
),
dtype=self.base_layer.weight.dtype,
device=self.base_layer.weight.device,
)
self.lora_a_stacked = torch.zeros(
(
max_loras,
self.base_layer.org_vocab_size +
lora_config.lora_extra_vocab_size,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
self.base_layer.embedding_dim,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_a_stacked_2d = self.lora_a_stacked.view(
self.lora_a_stacked.shape[0] * self.lora_a_stacked.shape[1],
self.lora_a_stacked.shape[2],
)
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
self.embeddings_tensors[index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
bias: Optional[torch.Tensor] = None,
):
self.reset_lora(index)
self.lora_a_stacked[index, :lora_a.shape[0], :lora_a.shape[1]].copy_(
lora_a, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
if embeddings_tensor is not None:
self.embeddings_tensors[
index, :embeddings_tensor.shape[0], :embeddings_tensor.
shape[1], ].copy_(embeddings_tensor, non_blocking=True)
if self.embeddings_slice is not None:
# TODO(yard1): Optimize this copy, we don't need to copy
# everything, just the modified part
embeddings = self.embeddings_tensors.view(
self.embeddings_tensors.shape[0] *
self.embeddings_tensors.shape[1],
self.embeddings_tensors.shape[2],
)[self.embeddings_slice[0]:self.embeddings_slice[1]]
assert self.embeddings_weights is not None
self.embeddings_weights[:embeddings.shape[0]].copy_(embeddings)
def forward(self, x: torch.Tensor) -> torch.Tensor:
added_tokens_mask = x > self.base_layer.org_vocab_size - 1
embeddings_indices = self.punica_wrapper.embeddings_indices
indices = embeddings_indices[1].view_as(x)
full_lora_a_embeddings = F.embedding(
x + indices,
self.lora_a_stacked_2d,
)
indices = embeddings_indices[0].view_as(x)
full_output = self.base_layer.forward(
x.add_(indices * added_tokens_mask))
full_output_org = full_output
if full_output.ndim == 3:
full_output = full_output.view(
full_output.shape[0] * full_output.shape[1], -1)
if full_lora_a_embeddings.ndim == 3:
full_lora_a_embeddings = full_lora_a_embeddings.view(
full_lora_a_embeddings.shape[0] *
full_lora_a_embeddings.shape[1],
-1,
)
self.punica_wrapper.add_lora_embedding(full_output,
full_lora_a_embeddings,
self.lora_b_stacked,
add_input=True)
return full_output.view_as(full_output_org)
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is VocabParallelEmbedding
class BaseLinearLayerWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: LinearBase):
super().__init__()
self.base_layer = base_layer
self.input_size = self.base_layer.input_size
self.device = _get_lora_device(self.base_layer)
self.lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]] = None
self.output_slices: Tuple[int, ...]
self.tp_size: int
self.output_size: int
self.n_slices: int
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
self.lora_config = lora_config
#
if isinstance(self.base_layer, ReplicatedLinear):
lora_a_out_size = lora_config.max_lora_rank
lora_b_out_size = self.output_size
elif isinstance(self.base_layer, ColumnParallelLinear):
lora_a_out_size = (lora_config.max_lora_rank if
not lora_config.fully_sharded_loras else divide(
lora_config.max_lora_rank, self.tp_size))
lora_b_out_size = self.output_size
elif isinstance(self.base_layer, RowParallelLinear):
lora_a_out_size = lora_config.max_lora_rank
lora_b_out_size = (self.output_size if
not lora_config.fully_sharded_loras else divide(
self.output_size, self.tp_size))
else:
raise NotImplementedError
self.lora_a_stacked = tuple(
torch.zeros(
max_loras,
1,
lora_a_out_size,
self.input_size,
dtype=lora_config.lora_dtype,
device=self.device,
) for _ in range(self.n_slices))
self.lora_b_stacked = tuple(
torch.zeros(
max_loras,
1,
lora_b_out_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.device,
) for _ in range(self.n_slices))
if lora_config.bias_enabled:
lora_bias_out_size = lora_b_out_size
self.lora_bias_stacked = tuple(
torch.zeros(
max_loras,
1,
lora_bias_out_size,
dtype=lora_config.lora_dtype,
device=self.device,
) for _ in range(self.n_slices))
self.output_slices = (self.lora_b_stacked[0].shape[2], )
def reset_lora(self, index: int):
for s_index in range(self.n_slices):
self.lora_a_stacked[s_index][index] = 0
self.lora_b_stacked[s_index][index] = 0
if self.lora_config.bias_enabled:
# Make mypy happy
self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...],
self.lora_bias_stacked)
self.lora_bias_stacked[s_index][index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
lora_bias: Optional[torch.Tensor] = None,
):
# Except for QKVParallelLinearWithLora and
# MergedColumnParallelLinearWithLoRA, all other linear LoRA layers
# store weights in a tuple of size 1. These two layers will
# override this function.
assert (len(self.lora_a_stacked) == len(self.lora_b_stacked) ==
self.n_slices == 1)
self.reset_lora(index)
if self.tp_size > 1:
lora_a = self.slice_lora_a(lora_a)
lora_b = self.slice_lora_b(lora_b)
if lora_bias is not None:
lora_bias = self.slice_bias(lora_bias)
self.lora_a_stacked[0][index,
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
lora_a.T, non_blocking=True)
self.lora_b_stacked[0][index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
if lora_bias is not None:
self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...],
self.lora_bias_stacked)
assert len(self.lora_bias_stacked)
self.lora_bias_stacked[0][index, 0, :lora_bias.shape[0]].copy_(
lora_bias.T, non_blocking=True)
def apply(self,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
output = self.base_layer.quant_method.apply(self.base_layer, x, bias)
self.punica_wrapper.add_lora_linear(output, x, self.lora_a_stacked,
self.lora_b_stacked,
self.lora_bias_stacked, 1.0,
self.output_slices)
return output
class ReplicatedLinearWithLoRA(BaseLinearLayerWithLoRA):
def __init__(self, base_layer: ReplicatedLinear) -> None:
super().__init__(base_layer, )
# To ensure interface compatibility, set to 1 always.
self.tp_size = 1
self.output_size = self.base_layer.output_size
self.n_slices = 1
def forward(self, input_):
"""Forward of ReplicatedLinearWithLoRA
Args:
input_: Tensor whose last dimension is `input_size`.
Returns:
- output
- bias
"""
bias = (self.base_layer.bias
if not self.base_layer.skip_bias_add else None)
# Matrix multiply.
output = self.apply(input_, bias)
output_bias = (self.base_layer.bias
if self.base_layer.skip_bias_add else None)
return output, output_bias
# ReplicatedLinear should always be replaced, regardless of the fully
# sharded LoRAs setting, because it is, by definition, copied per GPU.
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is ReplicatedLinear
class ColumnParallelLinearWithLoRA(BaseLinearLayerWithLoRA):
"""
LoRA on top of ColumnParallelLinear layer.
LoRA B is sliced for tensor parallelism.
There are two types for the `base_layer`:
1. ColumnParallelLinear, e.g.`dense_h_to_4h` in `FalconForCausalLM`.
2. MergedColumnParallelLinear, e.g.`gate_up_proj` in `Phi3ForCausalLM`.
"""
def __init__(self, base_layer: ColumnParallelLinear) -> None:
super().__init__(base_layer)
# The base_layer type is ColumnParallelLinear or
# MergedColumnParallelLinear, their weight sharding logic is
# inconsistent when TP is greater than 1.
self.is_merged_col_linear = type(
base_layer) is MergedColumnParallelLinear
self.tp_size = get_tensor_model_parallel_world_size()
self.output_size = self.base_layer.output_size_per_partition
# There is only one LoRA layer
self.n_slices = 1
def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
return lora_a
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
# Applicable to cases where the base_layer is
# MergedColumnParallelLinear.
if self.is_merged_col_linear:
tp_rank = get_tensor_model_parallel_rank()
shard_size = self.output_size // 2
offset = lora_b.shape[-1] // 2
left_weight = lora_b[:, tp_rank * shard_size:(tp_rank + 1) *
shard_size]
right_weight = lora_b[:, offset + tp_rank * shard_size:offset +
(tp_rank + 1) * shard_size]
lora_b = torch.cat([left_weight, right_weight], dim=1)
# Applicable to cases where the base_layer is
# ColumnParallelLinear.
else:
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.output_dim
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
lora_b = lora_b[:, start_idx:end_idx]
return lora_b
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
# TODO: Fix the slicing logic of bias.
if bias is None:
return bias
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.output_dim
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
bias = bias[start_idx:end_idx]
return bias
def forward(self, input_):
"""Forward of ColumnParallelLinear
Args:
input_: Tensor whose last dimension is `input_size`.
Returns:
- output
- bias
"""
bias = (self.base_layer.bias
if not self.base_layer.skip_bias_add else None)
# Matrix multiply.
output_parallel = self.apply(input_, bias)
if self.base_layer.gather_output:
# All-gather across the partitions.
output = tensor_model_parallel_all_gather(output_parallel)
else:
output = output_parallel
output_bias = (self.base_layer.bias
if self.base_layer.skip_bias_add else None)
return output, output_bias
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is ColumnParallelLinear or (
type(source_layer) is MergedColumnParallelLinear
and len(packed_modules_list) == 1)
class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
"""ColumnParallelLinear layer that is composed of 2 sublayers (slices)
packed together (eg. gate_proj + up_proj -> gate_up_proj).
This means we have 2 LoRAs, each applied to one half of the layer.
Both slices must have the same size.
"""
def __init__(
self, base_layer: Union[MergedColumnParallelLinear,
QKVParallelLinear]) -> None:
super().__init__(base_layer)
# There are two LoRA layers
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
# the output_sizes in MergedColumnParallelLinear is not sharded by tp
# we need to divide it by the tp_size to get correct slices size
output_sizes = self.base_layer.output_sizes
self.output_slices = tuple(
divide(output_size, self.tp_size) for output_size in output_sizes)
self.n_slices = len(self.output_slices)
self.output_ids = (self.tp_rank, ) * self.n_slices
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
"""
The main reason for overriding this function is to enhance code
maintainability.
"""
self.lora_config = lora_config
lora_a_output_size_per_partition = (
lora_config.max_lora_rank if not lora_config.fully_sharded_loras
else divide(lora_config.max_lora_rank, self.tp_size))
self.lora_a_stacked = tuple(
torch.zeros(
max_loras,
1,
lora_a_output_size_per_partition,
self.input_size,
dtype=lora_config.lora_dtype,
device=self.device,
) for _ in range(self.n_slices))
self.lora_b_stacked = tuple(
torch.zeros(
max_loras,
1,
output_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.device,
) for output_size in self.output_slices)
if lora_config.bias_enabled:
self.lora_bias_stacked = tuple(
torch.zeros(
max_loras,
1,
output_size,
dtype=lora_config.lora_dtype,
device=self.device,
) for output_size in self.output_slices)
def slice_lora_a(
self, lora_a: List[Union[torch.Tensor, None]]
) -> List[Union[torch.Tensor, None]]:
return lora_a
def slice_lora_b(
self, lora_b: List[Union[torch.Tensor, None]]
) -> List[Union[torch.Tensor, None]]:
for i, (shard_id, shard_size) in enumerate(
zip(self.output_ids, self.output_slices)):
if (lora_b_i := lora_b[i]) is not None:
lora_b[i] = lora_b_i[:, shard_size * shard_id:shard_size *
(shard_id + 1)]
return lora_b
def slice_bias(
self, bias: List[Union[torch.Tensor,
None]]) -> List[Union[torch.Tensor, None]]:
for i, (shard_id, shard_size) in enumerate(
zip(self.output_ids, self.output_slices)):
if (bias_i := bias[i]) is not None:
bias[i] = bias_i[shard_size * shard_id:shard_size *
(shard_id + 1)]
return bias
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
lora_bias: Optional[torch.Tensor] = None,
):
self.reset_lora(index)
if self.tp_size > 1:
lora_a = self.slice_lora_a(lora_a)
lora_b = self.slice_lora_b(lora_b)
if lora_bias is not None:
lora_bias = self.slice_bias(lora_bias)
for i in range(self.n_slices):
if (lora_a_i := lora_a[i]) is not None:
self.lora_a_stacked[i][
index, 0, :lora_a_i.shape[1], :lora_a_i.shape[0]].copy_(
lora_a_i.T, non_blocking=True)
if (lora_b_i := lora_b[i]) is not None:
self.lora_b_stacked[i][
index, 0, :lora_b_i.shape[1], :lora_b_i.shape[0]].copy_(
lora_b_i.T, non_blocking=True)
if lora_bias is not None:
self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...],
self.lora_bias_stacked)
for i in range(self.n_slices):
if (lora_bias_i := lora_bias[i]) is not None:
self.lora_bias_stacked[i][index,
0, :lora_bias_i.shape[0]].copy_(
lora_bias_i.T,
non_blocking=True)
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return (type(source_layer) is MergedColumnParallelLinear
and len(packed_modules_list) == 2)
class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
"""
ColumnParallelLinear layer that is specifically designed for
qkv_proj. Certain models, such as chatglm3 and baichuan-7b,
only contains a single LoRA within their qkv_proj layer.
During inference with Tensor Parallel, the weights of lora_b
must be accurately partitioned according to the respective ranks.
Q slice may have different shape than K and V slices (which both have
the same shape).
"""
def __init__(self, base_layer: QKVParallelLinear) -> None:
super().__init__(base_layer)
self.q_proj_total_size = (self.base_layer.total_num_heads *
self.base_layer.head_size)
self.q_proj_shard_size = (self.base_layer.num_heads *
self.base_layer.head_size)
self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
self.base_layer.head_size)
self.kv_proj_total_size = (self.base_layer.total_num_kv_heads *
self.base_layer.head_size)
# There is only one LoRA layer
self.n_slices = 1
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
tp_rank = get_tensor_model_parallel_rank()
self.q_shard_id = tp_rank
self.kv_shard_id = tp_rank // self.base_layer.num_kv_head_replicas
lora_b_q = lora_b[:, self.q_proj_shard_size *
self.q_shard_id:self.q_proj_shard_size *
(self.q_shard_id + 1)]
k_offset = self.q_proj_total_size
lora_b_k = lora_b[:, k_offset +
self.kv_proj_shard_size * self.kv_shard_id:k_offset +
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
v_offset = k_offset + self.kv_proj_total_size
lora_b_v = lora_b[:, v_offset +
self.kv_proj_shard_size * self.kv_shard_id:v_offset +
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
lora_b = torch.cat([lora_b_q, lora_b_k, lora_b_v], dim=1)
return lora_b
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
bias_q = bias[self.q_proj_shard_size *
self.q_shard_id:self.q_proj_shard_size *
(self.q_shard_id + 1)]
k_offset = self.q_proj_total_size
bias_k = bias[k_offset +
self.kv_proj_shard_size * self.kv_shard_id:k_offset +
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
v_offset = k_offset + self.kv_proj_total_size
bias_v = bias[v_offset +
self.kv_proj_shard_size * self.kv_shard_id:v_offset +
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
bias = torch.cat([bias_q, bias_k, bias_v], dim=1)
return bias
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
return type(source_layer) is QKVParallelLinear and len(
packed_modules_list) == 1
class MergedQKVParallelLinearWithLora(MergedColumnParallelLinearWithLoRA):
"""MergedColumnParallelLinear layer that is composed of 3 sublayers (slices)
packed together in qkv proj fashion
(q_proj + k_proj + v_proj -> qkv_proj).
This means we have 3 LoRAs, each applied to one slice of the layer.
Q slice may have different shape than K and V slices (which both have
the same shape).
"""
def __init__(self, base_layer: QKVParallelLinear) -> None:
super().__init__(base_layer)
# There are three LoRA layer.
self.n_slices = len(self.base_layer.output_sizes)
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
self.q_proj_shard_size = (self.base_layer.num_heads *
self.base_layer.head_size)
self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
self.base_layer.head_size)
self.q_shard_id = self.tp_rank
self.kv_shard_id = self.tp_rank // self.base_layer.num_kv_head_replicas
self.output_slices = (
self.q_proj_shard_size,
self.kv_proj_shard_size,
self.kv_proj_shard_size,
)
self.output_ids = (
self.q_shard_id,
self.kv_shard_id,
self.kv_shard_id,
)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
"""
The main reason for overloading this function is to handle inconsistent
weight dimensions in qkv lora.
"""
super().create_lora_weights(max_loras, lora_config, model_config)
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return (type(source_layer) is QKVParallelLinear
and len(packed_modules_list) == 3)
class RowParallelLinearWithLoRA(BaseLinearLayerWithLoRA):
def __init__(self, base_layer: RowParallelLinear) -> None:
super().__init__(base_layer)
self.tp_size = get_tensor_model_parallel_world_size()
# reset input_size
self.input_size = self.base_layer.input_size_per_partition
self.output_size = self.base_layer.output_size
self.tp_rank = get_tensor_model_parallel_rank()
# There is only one LoRA layer.
self.n_slices = 1
def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
shard_size = self.input_size
start_idx = self.tp_rank * shard_size
end_idx = (self.tp_rank + 1) * shard_size
lora_a = lora_a[start_idx:end_idx, :]
return lora_a
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
return lora_b
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
return bias
def forward(self, input_):
"""Forward of RowParallelLinear
Args:
input_: tensor whose last dimension is `input_size`. If
`input_is_parallel` is set, then the last dimension
is `input_size // tp_size`.
Returns:
- output
- bias
"""
# Set up backprop all-reduce.
if self.base_layer.input_is_parallel:
input_parallel = input_
else:
# TODO: simplify code below
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.base_layer.tp_size)
input_parallel = splitted_input[self.tp_rank].contiguous()
# Matrix multiply.
output_parallel = self.apply(input_parallel)
if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
output_ = tensor_model_parallel_all_reduce(output_parallel)
else:
output_ = output_parallel
if not self.base_layer.skip_bias_add:
output = (output_ + self.base_layer.bias
if self.base_layer.bias is not None else output_)
output_bias = None
else:
output = output_
output_bias = self.base_layer.bias
return output, output_bias
@property
def weight(self):
return (self.base_layer.weight if hasattr(self.base_layer, "weight")
else self.base_layer.qweight)
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is RowParallelLinear
class LogitsProcessorWithLoRA(BaseLayerWithLoRA):
"""
LoRA wrapper for LogitsProcessor, with extra logic to handle the
application of the LoRA adapter and added LoRA vocabulary.
Args:
base_layer: LogitsProcessor layer
hidden_size: hidden size of the model
dtype: data type of the model
device: device of the model
sharded_to_full_mapping: index mapping from sharded vocab to full vocab
received from base_layer.get_sharded_to_full_mapping(). If None,
no reindexing will be done.
"""
def __init__(self, base_layer: LogitsProcessor, hidden_size: int,
dtype: torch.dtype, device: torch.device,
sharded_to_full_mapping: Optional[List[int]]) -> None:
super().__init__()
self.base_layer = base_layer
self.hidden_size = hidden_size
self.dtype = dtype
self.device = device
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
self.sharded_to_full_mapping = sharded_to_full_mapping
@property
def logits_as_input(self):
return self.base_layer.logits_as_input
@property
def vocab_size(self):
return self.base_layer.vocab_size
@property
def scale(self):
return self.base_layer.scale
@property
def soft_cap(self):
return self.base_layer.soft_cap
@property
def use_gather(self):
return self.base_layer.use_gather
@property
def org_vocab_size(self):
return self.base_layer.org_vocab_size
@property
def include_gpu_probs_tensor(self):
return self.base_layer.include_gpu_probs_tensor
@property
def should_modify_greedy_probs_inplace(self):
return self.base_layer.should_modify_greedy_probs_inplace
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
# TODO: Verify if this condition can be further relaxed
if 32000 < self.base_layer.vocab_size > 257024:
raise ValueError("When using LoRA, vocab size must be "
"32000 >= vocab_size <= 257024")
self.lora_a_stacked = torch.zeros(
(
max_loras,
1,
lora_config.max_lora_rank,
self.hidden_size,
),
dtype=lora_config.lora_dtype,
device=self.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
# Pad for kernel compatibility
math.ceil(self.base_layer.vocab_size /
lora_config.lora_vocab_padding_size) *
lora_config.lora_vocab_padding_size,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.device,
)
self.embeddings_tensors = torch.full(
(max_loras, lora_config.lora_extra_vocab_size, self.hidden_size),
fill_value=float("-inf"),
dtype=self.dtype,
device=self.device,
)
if self.sharded_to_full_mapping is not None:
self.sharded_to_full_mapping_gpu = torch.tensor(
self.sharded_to_full_mapping,
device=self.device,
dtype=torch.long)
else:
self.sharded_to_full_mapping_gpu = None
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
self.embeddings_tensors[index] = float("-inf")