Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: vLLM LoRA Crash when using Dynamic Loading #11702

Closed
1 task done
haitwang-cloud opened this issue Jan 3, 2025 · 7 comments · Fixed by #11727
Closed
1 task done

[Bug]: vLLM LoRA Crash when using Dynamic Loading #11702

haitwang-cloud opened this issue Jan 3, 2025 · 7 comments · Fixed by #11727
Labels
bug Something isn't working

Comments

@haitwang-cloud
Copy link
Contributor

haitwang-cloud commented Jan 3, 2025

Your current environment

root@mistral-7b-lora-7946cc6459-jqx4h:/vllm-workspace# python3 collect_env.py 
Collecting environment information...
PyTorch version: 2.5.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.12.7 (main, Oct  1 2024, 08:52:12) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.6.41-amd64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3
Nvidia driver version: 535.86.10
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               192
On-line CPU(s) list:                  0-191
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Platinum 8468
CPU family:                           6
Model:                                143
Thread(s) per core:                   2
Core(s) per socket:                   48
Socket(s):                            2
Stepping:                             8
CPU max MHz:                          3800.0000
CPU min MHz:                          800.0000
BogoMIPS:                             4200.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization:                       VT-x
L1d cache:                            4.5 MiB (96 instances)
L1i cache:                            3 MiB (96 instances)
L2 cache:                             192 MiB (96 instances)
L3 cache:                             210 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190
NUMA node1 CPU(s):                    1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183,185,187,189,191
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu121torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.0
[pip3] torchvision==0.20.0
[pip3] transformers==4.46.1
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.1.dev1+g7b5f655 (git sha: 7b5f655
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0,2,4,6,8,10    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=GPU-710a76e8-c24c-99c5-d8a8-a734dbc7e932
NVIDIA_REQUIRE_CUDA=cuda>=12.4 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 brand=tesla,driver>=535,driver<536 brand=unknown,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=geforce,driver>=535,driver<536 brand=geforcertx,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=titan,driver>=535,driver<536 brand=titanrtx,driver>=535,driver<536
NVIDIA_DRIVER_CAPABILITIES=compute,utility
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.4.1
VLLM_ALLOW_RUNTIME_LORA_UPDATING=True
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
VLLM_NO_USAGE_STATS=1
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

No response

🐛 Describe the bug

We encountered a 500 error while testing the dynamic loading of LoRA with vLLM.

Steps to Reproduce:

Load LoRA dynamically:

curl -X 'POST' \
  'https://llm-lora-demo.ssdl.only.sap/v1/load_lora_adapter' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "lora_name": "Mistral-7B-Instruct-v0.3-lora",
  "lora_path": "ssdl-lora/Mistral-7B-Instruct-v0.3-lora/"
}'

The LoRA was loaded correctly as confirmed:

curl -X 'GET' \
  'https://llm-lora-demo.ssdl.only.sap/v1/models' \
  -H 'accept: application/json'

{
  "id": "Mistral-7B-Instruct-v0.3-lora",
  "object": "model",
  "created": 1735799863,
  "owned_by": "vllm",
  "root": "ssdl-lora/Mistral-7B-Instruct-v0.3-lora/",
  "parent": "mistralai/Mistral-7B-Instruct-v0.3",
  "max_model_len": null,
  "permission": [
    {
      "id": "modelperm-5582e5de3b2c4d7bb4d56af8b10a9ffc",
      "object": "model_permission",
      "created": 1735799863,
      "allow_create_engine": false,
      "allow_sampling": true,
      "allow_logprobs": true,
      "allow_search_indices": false,
      "allow_view": true,
      "allow_fine_tuning": false,
      "organization": "*",
      "group": null,
      "is_blocking": false
    }
  ]
}

Attempt to use the loaded LoRA:

curl -X 'POST' \
  'https://llm-lora-demo.ssdl.only.sap/v1/chat/completions' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "model": "Mistral-7B-Instruct-v0.3-lora",
  "max_tokens": 200,
  "messages": [
    {
      "role": "system",
      "content": "You are a multilingual expert in Roman history."
    },
    {
      "role": "user",
      "content": "please explain the meaning of \"alea iacta est\" and its associated story in English."
    }
  ]
}'

Observed Error:

WARNING 01-01 22:45:09 api_server.py:378] LoRA dynamic loading & unloading is enabled in the API server. This should ONLY be used for local development!
INFO 01-01 22:45:09 api_server.py:531] vLLM API server version 0.1.dev1+g7b5f655
INFO 01-01 22:45:09 api_server.py:532] args: Namespace(subparser='serve', model_tag='mistralai/Mistral-7B-Instruct-v0.3', config='', host='0.0.0.0', port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=[LoRAModulePath(name='e5-mistral-7b', path='/ssdl-lora/e5-mistral-7b-instruct/lora', base_model_name=None)], prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='mistralai/Mistral-7B-Instruct-v0.3', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', chat_template_text_format='string', trust_remote_code=True, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.4, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, enable_lora=True, max_loras=10, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, override_neuron_config=None, scheduling_policy='fcfs', pooling_type=None, pooling_norm=None, pooling_softmax=None, pooling_step_tag_id=None, pooling_returned_token_ids=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, dispatch_function=<function serve at 0x7f4fd2e98040>)
Traceback (most recent call last):
  File "/usr/local/bin/vllm", line 8, in <module>
    sys.exit(main())
             ^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/scripts.py", line 195, in main
    args.dispatch_function(args)
  File "/usr/local/lib/python3.12/dist-packages/vllm/scripts.py", line 41, in serve
    uvloop.run(run_server(args))
  File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 109, in run
    return __asyncio.run(
           ^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/asyncio/runners.py", line 194, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
  File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 61, in wrapper
    return await main
           ^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 547, in run_server
    sock.bind((args.host, args.port))
OSError: [Errno 98] Address already in use

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@haitwang-cloud haitwang-cloud added the bug Something isn't working label Jan 3, 2025
@jeejeelee
Copy link
Collaborator

Is this a local path?
ssdl-lora/Mistral-7B-Instruct-v0.3-lora/

@haitwang-cloud
Copy link
Contributor Author

@jeejeelee Yes, it's the file path in the Kubernetes Persistent Volume Claim (PVC) that we used to store the base model.

@jeejeelee
Copy link
Collaborator

Have you tried using absolute path?

@haitwang-cloud
Copy link
Contributor Author

haitwang-cloud commented Jan 3, 2025

@jeejeelee Here is the path of our lora file, and it is a absolute path

root@mistral-7b-lora-7946cc6459-jqx4h:/# ls ssdl-lora/Mistral-7B-Instruct-v0.3-lora/
README.md  adapter_config.json  adapter_model.safetensors

@joerunde
Copy link
Collaborator

joerunde commented Jan 3, 2025

@haitwang-cloud I'm guessing that the error logs you pasted are from the container rebooting after the lora adapter caused it to crash, and the real root cause of the crash is in the previous container's logs. You should be able to get those with the -p flag like kubectl logs -p ${pod}

I've opened a PR that will attempt to load the lora adapters eagerly so that you get an error response back from /v1/load_lora_adapter, and the server does not crash.

@haitwang-cloud
Copy link
Contributor Author

@joerunde Really appreciate your comments & code fix for this issue, I will have a try after your fix.

Also, I'm experiencing issues with the vLLM pod keep crashing in my case. Unfortunately, I'm unable to retrieve the previous container logs from terminal & Dynatrace, and I don't have enough time to capture the init logs.

(⎈|garden-ait--ssdl-aigpu-external:default garden-ait)➜  ~ k get pod -n ssdl-llm | grep mistral-7b-lora
mistral-7b-lora-7946cc6459-jqx4h              1/2     Running    3 (70s ago)   3d18h
image

@joerunde
Copy link
Collaborator

joerunde commented Jan 6, 2025

@haitwang-cloud Ah that's unfortunate, is your cluster setup so that this command doesn't work?

k logs mistral-7b-lora-7946cc6459-jqx4h -c mistral-7b-lora --previous

I think you could try setting up your container command so that it sleeps after failure so that the pod stays up, something equivalent to this:

vllm serve ${your args} || sleep infinity

Then you could k logs it and see the failure, though you'd also have to disable your probes to stop them from taking the container down

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants