You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Collecting environment information...
WARNING 10-07 03:01:24 _core_ext.py:180] Failed to import from vllm._core_C with ImportError('libtorch_cuda.so: cannot open shared object file: No such file or directory')
WARNING 10-07 03:01:24 _core_ext.py:180] Failed to import from vllm._core_C with ImportError('libtorch_cuda.so: cannot open shared object file: No such file or directory')
PyTorch version: 2.4.0+cpu
Is debug build: False
CUDA used to build PyTorch: Could not collect
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.4
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: 13th Gen Intel(R) Core(TM) i9-13900K
CPU family: 6
Model: 183
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 1
CPU max MHz: 5800.0000
CPU min MHz: 800.0000
BogoMIPS: 5990.40
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 896 KiB (24 instances)
L1i cache: 1.3 MiB (24 instances)
L2 cache: 32 MiB (12 instances)
L3 cache: 36 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Mitigation; Clear Register File
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==8.9.2.26
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-nccl-cu12==2.19.3
[pip3] nvidia-nvjitlink-cu12==12.3.101
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0+cpu
[pip3] torchvision==0.19.0+cpu
[pip3] transformers==4.45.1
[pip3] triton==2.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB 0-31 0 N/A
GPU1 PHB X 0-31 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
How would you like to use vllm
I want to run inference of a meta-llama/Llama-3.2-1B-Instruct (or 3B-Instruct/11B-Vision-Instruct/90B-Vision-Instruct). I don't know how to integrate it with vllm (cpu enabled & disabled GPU).
I created the image vllm-cpu-env by following the steps on Installation with CPU, but found error when calling the model.
Please advise any help on how to host it.
INFO 10-07 02:45:23 engine.py:288] Added request chat-ba27ac30bbf14d908aaa3a9c42ced2dd.
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] Exception in worker VllmWorkerProcess while processing method start_worker_execution_loop: ModelInputForCPU.__init__() got an unexpected keyword argument 'selected_token_indices', Traceback (most recent call last):
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/vllm/executor/multiproc_worker_utils.py", line 224, in _run_worker_process
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] output = executor(*args, **kwargs)
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] return func(*args, **kwargs)
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker_base.py", line 69, in start_worker_execution_loop
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] output = self.execute_model(execute_model_req=None)
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker_base.py", line 303, in execute_model
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] inputs = self.prepare_input(execute_model_req)
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker_base.py", line 293, in prepare_input
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] return self._get_worker_input_from_broadcast()
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker_base.py", line 237, in _get_worker_input_from_broadcast
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] self.model_runner.make_model_input_from_broadcasted_tensor_dict(
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/cpu_model_runner.py", line 463, in make_model_input_from_broadcasted_tensor_dict
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] return ModelInputForCPU.from_broadcasted_tensor_dict(
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/cpu_model_runner.py", line 71, in from_broadcasted_tensor_dict
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] return cls(**tensor_dict)
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231] TypeError: ModelInputForCPU.__init__() got an unexpected keyword argument 'selected_token_indices'
(VllmWorkerProcess pid=79) ERROR 10-07 02:45:23 multiproc_worker_utils.py:231]
ERROR 10-07 02:45:31 client.py:245] TimeoutError('No heartbeat received from MQLLMEngine')
ERROR 10-07 02:45:31 client.py:245] NoneType: None
ERROR: Exception in ASGI application
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/starlette/responses.py", line 257, in __call__
await wrap(partial(self.listen_for_disconnect, receive))
File "/usr/local/lib/python3.10/dist-packages/starlette/responses.py", line 253, in wrap
await func()
File "/usr/local/lib/python3.10/dist-packages/starlette/responses.py", line 230, in listen_for_disconnect
message = await receive()
File "/usr/local/lib/python3.10/dist-packages/uvicorn/protocols/http/httptools_impl.py", line 555, in receive
await self.message_event.wait()
File "/usr/lib/python3.10/asyncio/locks.py", line 214, in wait
await fut
asyncio.exceptions.CancelledError: Cancelled by cancel scope 7fc275ed62c0
During handling of the above exception, another exception occurred:
+ Exception Group Traceback (most recent call last):
| File "/usr/local/lib/python3.10/dist-packages/uvicorn/protocols/http/httptools_impl.py", line 401, in run_asgi
| result = await app( # type: ignore[func-returns-value]
| File "/usr/local/lib/python3.10/dist-packages/uvicorn/middleware/proxy_headers.py", line 60, in __call__
| return await self.app(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/fastapi/applications.py", line 1054, in __call__
| await super().__call__(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/applications.py", line 113, in __call__
| await self.middleware_stack(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/middleware/errors.py", line 187, in __call__
| raise exc
| File "/usr/local/lib/python3.10/dist-packages/starlette/middleware/errors.py", line 165, in __call__
| await self.app(scope, receive, _send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/middleware/cors.py", line 85, in __call__
| await self.app(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/middleware/exceptions.py", line 62, in __call__
| await wrap_app_handling_exceptions(self.app, conn)(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 62, in wrapped_app
| raise exc
| File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 51, in wrapped_app
| await app(scope, receive, sender)
| File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 715, in __call__
| await self.middleware_stack(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 735, in app
| await route.handle(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 288, in handle
| await self.app(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 76, in app
| await wrap_app_handling_exceptions(app, request)(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 62, in wrapped_app
| raise exc
| File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 51, in wrapped_app
| await app(scope, receive, sender)
| File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 74, in app
| await response(scope, receive, send)
| File "/usr/local/lib/python3.10/dist-packages/starlette/responses.py", line 250, in __call__
| async with anyio.create_task_group() as task_group:
| File "/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py", line 736, in __aexit__
| raise BaseExceptionGroup(
| exceptiongroup.ExceptionGroup: unhandled errors in a TaskGroup (1 sub-exception)
+-+---------------- 1 ----------------
| Traceback (most recent call last):
| File "/usr/local/lib/python3.10/dist-packages/starlette/responses.py", line 253, in wrap
| await func()
| File "/usr/local/lib/python3.10/dist-packages/starlette/responses.py", line 242, in stream_response
| async for chunk in self.body_iterator:
| File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/openai/serving_chat.py", line 314, in chat_completion_stream_generator
| async for res in result_generator:
| File "/usr/local/lib/python3.10/dist-packages/vllm/utils.py", line 455, in iterate_with_cancellation
| item = await awaits[0]
| File "/usr/local/lib/python3.10/dist-packages/vllm/engine/multiprocessing/client.py", line 555, in _process_request
| raise request_output
| vllm.engine.multiprocessing.MQEngineDeadError: Engine loop is not running. Inspect the stacktrace to find the original error: TimeoutError('No heartbeat received from MQLLMEngine').
+------------------------------------
Before submitting a new issue...
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
Your current environment
How would you like to use vllm
I want to run inference of a meta-llama/Llama-3.2-1B-Instruct (or 3B-Instruct/11B-Vision-Instruct/90B-Vision-Instruct). I don't know how to integrate it with vllm (cpu enabled & disabled GPU).
I created the image
vllm-cpu-env
by following the steps on Installation with CPU, but found error when calling the model.Please advise any help on how to host it.
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: