-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathMSET.py
189 lines (144 loc) · 4.42 KB
/
MSET.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import pandas as pd
from scipy import linalg as spla
from sklearn.preprocessing import StandardScaler
class MSET:
"""
MSET - multivariate state estimation technique is a non-parametric and statistical modeling method, which calculates the estimated values based on the weighted average of historical data. In terms of procedure, MSET is similar to some nonparametric regression methods, such as, auto-associative kernel regression.
Parameters
----------
None
Attributes
----------
None
Examples
--------
>>> from MSET import MSET
>>> model = MSET()
>>> model.fit(data)
>>> prediction = model.predict(test_data)
"""
def __init__(self):
self._Random(0)
def _build_model(self):
self.SS = StandardScaler()
def _Random(self, seed_value):
import os
os.environ["PYTHONHASHSEED"] = str(seed_value)
import random
random.seed(seed_value)
import numpy as np
np.random.seed(seed_value)
import tensorflow as tf
tf.random.set_seed(seed_value)
def calc_W(self, X_obs):
"""
Calculate the weight matrix W.
Parameters
----------
X_obs : numpy.ndarray
Observations for which to calculate the weight matrix.
Returns
-------
numpy.ndarray
Weight matrix W.
"""
DxX_obs = self.otimes(self.D, X_obs)
# try:
W = spla.lu_solve(self.LU_factors, DxX_obs)
# except:
# W = np.linalg.solve(self.DxD, DxX_obs)
return W
def otimes(self, X, Y):
"""
Compute the outer product of two matrices X and Y.
Parameters
----------
X : numpy.ndarray
First matrix.
Y : numpy.ndarray
Second matrix.
Returns
-------
numpy.ndarray
Outer product of X and Y.
"""
m1, n = np.shape(X)
m2, p = np.shape(Y)
if m1 != m2:
raise Exception("dimensionality mismatch between X and Y.")
Z = np.zeros((n, p))
if n != p:
for i in range(n):
for j in range(p):
Z[i, j] = self.kernel(X[:, i], Y[:, j])
else:
for i in range(n):
for j in range(i, p):
Z[i, j] = self.kernel(X[:, i], Y[:, j])
Z[j, i] = Z[i, j]
return Z
def kernel(self, x, y):
"""
Compute the kernel function value.
Parameters
----------
x : numpy.ndarray
First vector.
y : numpy.ndarray
Second vector.
Returns
-------
float
Kernel function s(x,y) = 1 - ||x-y||/(||x|| + ||y||) value.
"""
if all(x == y):
return 1.0
else:
return 1.0 - np.linalg.norm(x - y) / (
np.linalg.norm(x) + np.linalg.norm(y)
)
def fit(self, df, train_start=None, train_stop=None):
"""
Train the MSET model on the provided data.
Parameters
----------
df : pandas.DataFrame
Input data for training the model.
train_start : int, optional
Index to start training, by default None.
train_stop : int, optional
Index to stop training, by default None.
Returns
-------
None
"""
self.model = self._build_model()
self.D = df[train_start:train_stop].values.T.copy()
self.D = self.SS.fit_transform(self.D.T).T
self.DxD = self.otimes(self.D, self.D)
self.LU_factors = spla.lu_factor(self.DxD)
def predict(self, data):
"""
Generate predictions using the trained MSET model.
Parameters
----------
data : pandas.DataFrame
Input data for generating predictions.
Returns
-------
pandas.DataFrame
Predicted output data.
"""
X_obs = data.values.T.copy()
X_obs = self.SS.transform(X_obs.T).T
pred = np.zeros(X_obs.T.shape)
for i in range(X_obs.shape[1]):
pred[[i], :] = (
self.D @ self.calc_W(X_obs[:, i].reshape([-1, 1]))
).T
return pd.DataFrame(
self.SS.inverse_transform(pred),
index=data.index,
columns=data.columns,
)