-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathVanilla_LSTM.py
112 lines (87 loc) · 2.76 KB
/
Vanilla_LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
class Vanilla_LSTM:
"""
LSTM-based neural network for anomaly detection using reconstruction error as an anomaly score.
Parameters
----------
params : list
A list containing various parameters for configuring the LSTM model.
Attributes
----------
model : Sequential
The trained LSTM model.
Examples
--------
>>> from Vanilla_LSTM import Vanilla_LSTM
>>> PARAMS = [N_STEPS, EPOCHS, BATCH_SIZE, VAL_SPLIT]
>>> lstm_model = Vanilla_LSTM(PARAMS)
>>> lstm_model.fit(train_data, train_labels)
>>> predictions = lstm_model.predict(test_data)
"""
def __init__(self, params):
self.params = params
def _Random(self, seed_value):
import os
os.environ["PYTHONHASHSEED"] = str(seed_value)
import random
random.seed(seed_value)
import numpy as np
np.random.seed(seed_value)
import tensorflow as tf
tf.random.set_seed(seed_value)
def _build_model(self):
self._Random(0)
model = Sequential()
model.add(
LSTM(
100,
activation="relu",
return_sequences=True,
input_shape=(self.params[0], self.n_features),
)
)
model.add(LSTM(100, activation="relu"))
model.add(Dense(self.n_features))
model.compile(optimizer="adam", loss="mae", metrics=["mse"])
return model
def fit(self, X, y):
"""
Train the LSTM model on the provided data.
Parameters
----------
X : numpy.ndarray
Input data for training the model.
y : numpy.ndarray
Target data for training the model.
"""
self.n_features = X.shape[2]
self.model = self._build_model()
early_stopping = EarlyStopping(patience=10, verbose=0)
reduce_lr = ReduceLROnPlateau(
factor=0.1, patience=5, min_lr=0.0001, verbose=0
)
self.model.fit(
X,
y,
validation_split=self.params[3],
epochs=self.params[1],
batch_size=self.params[2],
verbose=0,
shuffle=False,
callbacks=[early_stopping, reduce_lr],
)
def predict(self, data):
"""
Generate predictions using the trained LSTM model.
Parameters
----------
data : numpy.ndarray
Input data for generating predictions.
Returns
-------
numpy.ndarray
Predicted output data.
"""
return self.model.predict(data)