-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmetrics.py
833 lines (735 loc) · 29.1 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
"""
This module is part of library (tsad)[https://github.com/waico/tsad]
"""
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def filter_detecting_boundaries(detecting_boundaries):
"""
[[t1,t2],[],[t1,t2]] -> [[t1,t2],[t1,t2]]
[[],[]] -> []
"""
_detecting_boundaries = []
for couple in detecting_boundaries.copy():
if len(couple) != 0:
_detecting_boundaries.append(couple)
detecting_boundaries = _detecting_boundaries
return detecting_boundaries
def single_detecting_boundaries(
true_series,
true_list_ts,
prediction,
portion,
window_width,
anomaly_window_destination,
intersection_mode,
):
"""
Extract detecting_boundaries from series or list of timestamps
"""
if (true_series is not None) and (true_list_ts is not None):
raise Exception("Choose the ONE type")
elif true_series is not None:
true_timestamps = true_series[true_series == 1].index
elif true_list_ts is not None:
if len(true_list_ts) == 0:
return [[]]
else:
true_timestamps = true_list_ts
else:
raise Exception("Choose the type")
#
detecting_boundaries = []
td = (
pd.Timedelta(window_width)
if window_width is not None
else pd.Timedelta(
(prediction.index[-1] - prediction.index[0])
/ (len(true_timestamps) + 1)
* portion
)
)
for val in true_timestamps:
if anomaly_window_destination == "lefter":
detecting_boundaries.append([val - td, val])
elif anomaly_window_destination == "righter":
detecting_boundaries.append([val, val + td])
elif anomaly_window_destination == "center":
detecting_boundaries.append([val - td / 2, val + td / 2])
else:
raise RuntimeError("choose anomaly_window_destination")
# block for resolving intersection problem:
# important to watch right boundary to be never included to avoid windows intersection
if len(detecting_boundaries) == 0:
return detecting_boundaries
new_detecting_boundaries = detecting_boundaries.copy()
intersection_count = 0
for i in range(len(new_detecting_boundaries) - 1):
if (
new_detecting_boundaries[i][1]
>= new_detecting_boundaries[i + 1][0]
):
# transform print to list of intersections
# print(f'Intersection of scoring windows {new_detecting_boundaries[i][1], new_detecting_boundaries[i+1][0]}')
intersection_count += 1
if intersection_mode == "cut left window":
new_detecting_boundaries[i][1] = new_detecting_boundaries[
i + 1
][0]
elif intersection_mode == "cut right window":
new_detecting_boundaries[i + 1][0] = new_detecting_boundaries[
i
][1]
elif intersection_mode == "cut both":
_a = new_detecting_boundaries[i][1]
new_detecting_boundaries[i][1] = new_detecting_boundaries[
i + 1
][0]
new_detecting_boundaries[i + 1][0] = _a
else:
raise Exception("choose the intersection_mode")
# print(f'There are {intersection_count} intersections of scoring windows')
detecting_boundaries = new_detecting_boundaries.copy()
return detecting_boundaries
def check_errors(my_list):
"""
Check format of input true data
Parameters
----------
my_list - uniform format of true (See evaluate.evaluate)
Returns
----------
mx : depth of list, or variant of processing
"""
assert isinstance(my_list, list)
mx = 1
# ravel = []
level_list = {}
def check_error(my_list):
return not (
(all(isinstance(my_el, list) for my_el in my_list))
or (all(isinstance(my_el, pd.Series) for my_el in my_list))
or (all(isinstance(my_el, pd.Timestamp) for my_el in my_list))
)
def recurse(my_list, level=1):
nonlocal mx
nonlocal level_list
if check_error(my_list):
raise Exception(
f"Non uniform data format in level {level}: {my_list}"
)
if level not in level_list.keys():
level_list[level] = [] # for checking format
for my_el in my_list:
level_list[level].append(my_el)
if isinstance(my_el, list):
mx = max([mx, level + 1])
recurse(my_el, level + 1)
recurse(my_list)
for level in level_list:
if check_error(level_list[level]):
raise Exception(
f"Non uniform data format in level {level}: {my_list}"
)
if 3 in level_list:
for el in level_list[2]:
if not ((len(el) == 2) or (len(el) == 0)):
raise Exception(
f"Non uniform data format in level {2}: {my_list}"
)
return mx
def extract_cp_confusion_matrix(
detecting_boundaries, prediction, point=0, binary=False
):
"""
prediction: pd.Series
point=None for binary case
Returns
----------
dict: TPs: dict of numer window of [t1,t_cp,t2]
FPs: list of timestamps
FNs: list of numer window
"""
_detecting_boundaries = []
for couple in detecting_boundaries.copy():
if len(couple) != 0:
_detecting_boundaries.append(couple)
detecting_boundaries = _detecting_boundaries
times_pred = prediction[prediction.dropna() == 1].sort_index().index
my_dict = {}
my_dict["TPs"] = {}
my_dict["FPs"] = []
my_dict["FNs"] = []
if len(detecting_boundaries) != 0:
my_dict["FPs"].append(
times_pred[times_pred < detecting_boundaries[0][0]]
) # left
for i in range(len(detecting_boundaries)):
times_pred_window = times_pred[
(times_pred >= detecting_boundaries[i][0])
& (times_pred <= detecting_boundaries[i][1])
]
times_prediction_in_window = prediction[
detecting_boundaries[i][0] : detecting_boundaries[i][1]
].index
if len(times_pred_window) == 0:
if not binary:
my_dict["FNs"].append(i)
else:
my_dict["FNs"].append(times_prediction_in_window)
else:
my_dict["TPs"][i] = [
detecting_boundaries[i][0],
times_pred_window[point]
if not binary
else times_pred_window, # attention
detecting_boundaries[i][1],
]
if binary:
my_dict["FNs"].append(
times_prediction_in_window[
~times_prediction_in_window.isin(times_pred_window)
]
)
if len(detecting_boundaries) > i + 1:
my_dict["FPs"].append(
times_pred[
(times_pred > detecting_boundaries[i][1])
& (times_pred < detecting_boundaries[i + 1][0])
]
)
my_dict["FPs"].append(
times_pred[times_pred > detecting_boundaries[i][1]]
) # right
else:
my_dict["FPs"].append(times_pred)
if len(my_dict["FPs"]) > 1:
my_dict["FPs"] = np.concatenate(my_dict["FPs"])
elif len(my_dict["FPs"]) == 1:
my_dict["FPs"] = my_dict["FPs"][0]
if len(my_dict["FPs"]) == 0: # not elif on purpose
my_dict["FPs"] = []
if binary:
if len(my_dict["FNs"]) > 1:
my_dict["FNs"] = np.concatenate(my_dict["FNs"])
elif len(my_dict["FNs"]) == 1:
my_dict["FNs"] = my_dict["FNs"][0]
if len(my_dict["FNs"]) == 0: # not elif on purpose
my_dict["FNs"] = []
return my_dict
def confusion_matrix(true, prediction):
true_ = true == 1
prediction_ = prediction == 1
TP = (true_ & prediction_).sum()
TN = (~true_ & ~prediction_).sum()
FP = (~true_ & prediction_).sum()
FN = (true_ & ~prediction_).sum()
return TP, TN, FP, FN
def single_average_delay(
detecting_boundaries,
prediction,
anomaly_window_destination,
clear_anomalies_mode,
):
"""
anomaly_window_destination: 'lefter', 'righter', 'center'. Default='right'
"""
detecting_boundaries = filter_detecting_boundaries(detecting_boundaries)
point = 0 if clear_anomalies_mode else -1
dict_cp_confusion = extract_cp_confusion_matrix(
detecting_boundaries, prediction, point=point
)
missing = 0
detectHistory = []
all_true_anom = 0
FP = 0
FP += len(dict_cp_confusion["FPs"])
missing += len(dict_cp_confusion["FNs"])
all_true_anom += len(dict_cp_confusion["TPs"]) + len(
dict_cp_confusion["FNs"]
)
if anomaly_window_destination == "lefter":
def average_time(output_cp_cm_tp):
return output_cp_cm_tp[2] - output_cp_cm_tp[1]
elif anomaly_window_destination == "righter":
def average_time(output_cp_cm_tp):
return output_cp_cm_tp[1] - output_cp_cm_tp[0]
elif anomaly_window_destination == "center":
def average_time(output_cp_cm_tp):
return output_cp_cm_tp[1] - (
output_cp_cm_tp[0]
+ (output_cp_cm_tp[2] - output_cp_cm_tp[0]) / 2
)
else:
raise Exception("Choose anomaly_window_destination")
for fp_case_window in dict_cp_confusion["TPs"]:
detectHistory.append(
average_time(dict_cp_confusion["TPs"][fp_case_window])
)
return missing, detectHistory, FP, all_true_anom
def my_scale(
fp_case_window=None,
A_tp=1,
A_fp=0,
koef=1,
detalization=1000,
clear_anomalies_mode=True,
plot_figure=False,
):
"""
ts - segment on which the window is applied
"""
x = np.linspace(-np.pi / 2, np.pi / 2, detalization)
x = x if clear_anomalies_mode else x[::-1]
y = (
(A_tp - A_fp)
/ 2
* -1
* np.tanh(koef * x)
/ (np.tanh(np.pi * koef / 2))
+ (A_tp - A_fp) / 2
+ A_fp
)
if not plot_figure and fp_case_window is not None:
event = int(
(fp_case_window[1] - fp_case_window[0])
/ (fp_case_window[-1] - fp_case_window[0])
* detalization
)
if event >= len(x):
event = len(x) - 1
score = y[event]
return score
else:
return y
def single_evaluate_nab(
detecting_boundaries,
prediction,
table_of_coef=None,
clear_anomalies_mode=True,
scale_func="improved",
scale_koef=1,
):
"""
detecting_boundaries: list of list of two float values
The list of lists of left and right boundary indices
for scoring results of labeling if empty. Can be [[]], or [[],[t1,t2],[]]
table_of_coef: pandas array (3x4) of float values
Table of coefficients for NAB score function
indices: 'Standard','LowFP','LowFN'
columns:'A_tp','A_fp','A_tn','A_fn'
scale_func {default}, improved
недостатки scale_func default -
1 - зависит от относительного шага, а это значит, что если
слишком много точек в scoring window то перепад будет слишком
жестким в середение.
2- то самая левая точка не равно Atp, а права не равна Afp
(особенно если пррименять расплывающую множитель)
clear_anomalies_mode тогда слева от границы Atp срправа Afp,
иначе fault mode, когда слева от границы Afp срправа Atp
"""
if scale_func == "improved":
scale_func = my_scale
else:
raise Exception("choose the scale_func")
# filter
detecting_boundaries = filter_detecting_boundaries(detecting_boundaries)
if table_of_coef is None:
table_of_coef = pd.DataFrame(
[
[1.0, -0.11, 1.0, -1.0],
[1.0, -0.22, 1.0, -1.0],
[1.0, -0.11, 1.0, -2.0],
]
)
table_of_coef.index = pd.Index(["Standard", "LowFP", "LowFN"])
table_of_coef.index.name = "Metric"
table_of_coef.columns = ["A_tp", "A_fp", "A_tn", "A_fn"]
# GO
point = 0 if clear_anomalies_mode else -1
dict_cp_confusion = extract_cp_confusion_matrix(
detecting_boundaries, prediction, point=point
)
Scores, Scores_perfect, Scores_null = [], [], []
for profile in ["Standard", "LowFP", "LowFN"]:
A_tp = table_of_coef["A_tp"][profile]
A_fp = table_of_coef["A_fp"][profile]
A_fn = table_of_coef["A_fn"][profile]
score = 0
score += A_fp * len(dict_cp_confusion["FPs"])
score += A_fn * len(dict_cp_confusion["FNs"])
for fp_case_window in dict_cp_confusion["TPs"]:
set_times = dict_cp_confusion["TPs"][fp_case_window]
score += scale_func(set_times, A_tp, A_fp, koef=scale_koef)
Scores.append(score)
Scores_perfect.append(len(detecting_boundaries) * A_tp)
Scores_null.append(len(detecting_boundaries) * A_fn)
return np.array(
[np.array(Scores), np.array(Scores_null), np.array(Scores_perfect)]
)
def chp_score(
true,
prediction,
metric="nab",
window_width=None,
portion=0.1,
anomaly_window_destination="lefter",
clear_anomalies_mode=True,
intersection_mode="cut right window",
table_of_coef=None,
scale_func="improved",
scale_koef=1,
plot_figure=False,
verbose=True,
):
"""
Parameters
----------
true: variants:
or: if one dataset : pd.Series with binary int labels (1 is
anomaly, 0 is not anomaly);
or: if one dataset : list of pd.Timestamp of true labels, or []
if haven't labels ;
or: if one dataset : list of list of t1,t2: left and right
detection, boundaries of pd.Timestamp or [[]] if haven't labels
or: if many datasets: list (len of number of datasets) of pd.Series
with binary int labels;
or: if many datasets: list of list of pd.Timestamp of true labels, or
true = [ts,[]] if haven't labels for specific dataset;
or: if many datasets: list of list of list of t1,t2: left and right
detection boundaries of pd.Timestamp;
If we haven't true labels for specific dataset then we must insert
empty list of labels: true = [[[]],[[t1,t2],[t1,t2]]].
__True labels of anomalies or changepoints.
It is important to have appropriate labels (CP or
anomaly) for corresponding metric (See later "metric")
prediction: variants:
or: if one dataset : pd.Series with binary int labels
(1 is anomaly, 0 is not anomaly);
or: if many datasets: list (len of number of datasets)
of pd.Series with binary int labels.
__Predicted labels of anomalies or changepoints.
It is important to have appropriate labels (CP or
anomaly) for corresponding metric (See later "metric")
metric: {'nab', 'binary', 'average_time', 'confusion_matrix'}.
Default='nab'
Affects to output (see later: Returns)
Changepoint problem: {'nab', 'average_time'}.
Standard AD problem: {'binary', 'confusion_matrix'}.
'nab' is Numenta Anomaly Benchmark metric
'average_time' is both average delay or time to failure
depend on situation.
'binary': FAR, MAR, F1.
'confusion_matrix' standard confusion_matrix for any point.
window_width: 'str' for pd.Timedelta
Width of detection window. Default=None.
portion : float, default=0.1
The portion is needed if window_width = None.
The width of the detection window in this case is equal
to a portion of the width of the length of prediction divided
by the number of real CPs in this dataset. Default=0.1.
anomaly_window_destination: {'lefter', 'righter', 'center'}. Default='right'
The parameter of the location of the detection window relative to the anomaly.
'lefter' : the detection window will be on the left side of the anomaly
'righter' : the detection window will be on the right side of the anomaly
'center' : the scoring window will be positioned relative to the center of anom.
clear_anomalies_mode : boolean, default=True.
True : then the `left value of a Scoring function is Atp and the
`right is Afp. Only the `first value inside the detection window is taken.
False: then the `right value of a Scoring function is Atp and the
`left is Afp. Only the `last value inside the detection window is taken.
intersection_mode: {'cut left window', 'cut right window', 'both'}.
Default='cut right window'
The parameter will be used if the detection windows overlap for
true changepoints, which is generally undesirable and requires a
different approach than simply cropping the scoring window using
this parameter.
'cut left window' : will cut the overlapping part of the left window
'cut right window': will cut the intersecting part of the right window
'both' : will crop the intersecting portion of both the left
and right windows
verbose: boolean, default=True.
If True, then output useful information
plot_figure : boolean, default=False.
If True, then drawing the score fuctions, detection windows and predictions
It is used for example, for calibration the scale_koef.
table_of_coef (metric='nab'): pd.DataFrame of specific form. See bellow.
Application profiles of NAB metric.If Default is None:
table_of_coef = pd.DataFrame([[1.0,-0.11,1.0,-1.0],
[1.0,-0.22,1.0,-1.0],
[1.0,-0.11,1.0,-2.0]])
table_of_coef.index = ['Standard','LowFP','LowFN']
table_of_coef.index.name = "Metric"
table_of_coef.columns = ['A_tp','A_fp','A_tn','A_fn']
scale_func (metric='nab'): "default" of "improved". Default="improved".
Scoring function in NAB metric.
'default' : standard NAB scoring function
'improved' : Our function for resolving disadvantages
of standard NAB scoring function
scale_koef : float > 0. Default=1.0.
Smoothing factor. The smaller it is,
the smoother the scoring function is.
Returns
----------
metrics : value of metrics, depend on metric
'nab': tuple
- Standard profile, float
- Low FP profile, float
- Low FN profile
'average_time': tuple
- Average time (average delay, or time to failure)
- Missing changepoints, int
- FPs, int
- Number of true changepoints, int
'binary': tuple
- F1 metric, float
- False alarm rate, %, float
- Missing Alarm Rate, %, float
'binary': tuple
- TPs, int
- TNs, int
- FPs, int
- FNS, int
"""
assert isinstance(true, pd.Series) or isinstance(true, list)
# checking prediction
if isinstance(prediction, pd.Series):
true = [true]
prediction = [prediction]
elif isinstance(prediction, list):
if not all(isinstance(my_el, pd.Series) for my_el in prediction):
raise Exception("Incorrect format for prediction")
else:
raise Exception("Incorrect format for prediction")
# checking dataset length: Number of dataset unequal
assert len(true) == len(prediction)
# final check
input_variant = check_errors(true)
def check_sort(my_list, input_variant):
for dataset in my_list:
if input_variant == 2:
assert all(np.sort(dataset) == np.array(dataset))
elif input_variant == 3:
assert all(
np.sort(np.concatenate(dataset)) == np.concatenate(dataset)
)
elif input_variant == 1:
assert all(
dataset.index.values == dataset.sort_index().index.values
)
check_sort(true, input_variant)
check_sort(prediction, 1)
# part 2. To detected boundaries
if (
((metric == "nab") or (metric == "average_time"))
and (window_width is None)
and (input_variant != 3)
):
print(
f"Since you didn't choose window_width and portion, portion will be default ({portion})"
)
if input_variant == 1:
detecting_boundaries = [
single_detecting_boundaries(
true_series=true[i],
true_list_ts=None,
prediction=prediction[i],
window_width=window_width,
portion=portion,
anomaly_window_destination=anomaly_window_destination,
intersection_mode=intersection_mode,
)
for i in range(len(true))
]
elif input_variant == 2:
detecting_boundaries = [
single_detecting_boundaries(
true_series=None,
true_list_ts=true[i],
prediction=prediction[i],
window_width=window_width,
portion=portion,
anomaly_window_destination=anomaly_window_destination,
intersection_mode=intersection_mode,
)
for i in range(len(true))
]
elif input_variant == 3:
detecting_boundaries = true.copy()
# Next anti fool system [[[t1,t2]],[]] -> [[[t1,t2]],[[]]]
for i in range(len(detecting_boundaries)):
if len(detecting_boundaries[i]) == 0:
detecting_boundaries[i] = [[]]
else:
raise Exception("Unknown format for true data")
# part 3. To compute metric
if plot_figure:
num_datasets = len(true)
if ((metric == "binary") or (metric == "confusion_matrix")) and (
input_variant == 1
):
f = plt.figure(figsize=(16, 5 * num_datasets))
grid = gridspec.GridSpec(num_datasets, 1)
for i in range(num_datasets):
globals()["ax" + str(i)] = f.add_subplot(grid[i])
prediction[i].plot(
ax=globals()["ax" + str(i)], label="pred", marker="o"
)
true[i].plot( # type: ignore
ax=globals()["ax" + str(i)], label="true", marker="o"
)
globals()["ax" + str(i)].legend()
plt.show()
else:
f = plt.figure(figsize=(16, 5 * num_datasets))
grid = gridspec.GridSpec(num_datasets, 1)
detalization = 100
for i in range(num_datasets):
globals()["ax" + str(i)] = f.add_subplot(grid[i])
print_legend_boundary = True
def plot_cp(couple, anomaly_window_destination, ax, label):
if anomaly_window_destination == "lefter":
ax.axvline(couple[1], c="r", label=label)
elif anomaly_window_destination == "righter":
ax.axvline(couple[0], c="r", label=label)
elif anomaly_window_destination == "center":
ax.axvline(
couple[0] + ((couple[1] - couple[0]) / 2),
c="r",
label=label,
)
for couple in detecting_boundaries[i]:
if len(couple) > 0:
globals()["ax" + str(i)].axvspan(
couple[0],
couple[1],
alpha=0.5,
color="green",
label="detection \nboundary"
if print_legend_boundary
else None,
)
nab = pd.Series(
my_scale(
plot_figure=True, detalization=detalization
),
index=pd.date_range(
couple[0], couple[1], periods=detalization
),
)
nab.plot(
ax=globals()["ax" + str(i)],
linewidth=0.4,
color="brown",
label="nab scoring func"
if print_legend_boundary
else None,
)
plot_cp(
couple,
anomaly_window_destination,
globals()["ax" + str(i)],
label="Changepoint"
if print_legend_boundary
else None,
)
print_legend_boundary = False
else:
pass
prediction[i].plot(
ax=globals()["ax" + str(i)], label="pred", marker="o"
)
globals()["ax" + str(i)].legend()
plt.show()
if metric == "nab":
matrix = np.zeros((3, 3))
for i in range(len(prediction)):
matrix_ = single_evaluate_nab(
detecting_boundaries[i],
prediction[i],
table_of_coef=table_of_coef,
clear_anomalies_mode=clear_anomalies_mode,
scale_func=scale_func,
scale_koef=scale_koef,
# plot_figure=plot_figure,
)
matrix = matrix + matrix_
results = {}
desc = ["Standard", "LowFP", "LowFN"]
for t, profile_name in enumerate(desc):
results[profile_name] = round(
100
* (matrix[0, t] - matrix[1, t])
/ (matrix[2, t] - matrix[1, t]),
2,
)
if verbose:
print(profile_name, " - ", results[profile_name])
return results
elif metric == "average_time":
missing, detectHistory, FP, all_true_anom = 0, [], 0, 0
for i in range(len(prediction)):
missing_, detectHistory_, FP_, all_true_anom_ = (
single_average_delay(
detecting_boundaries[i],
prediction[i],
anomaly_window_destination=anomaly_window_destination,
clear_anomalies_mode=clear_anomalies_mode,
)
)
missing, detectHistory, FP, all_true_anom = (
missing + missing_,
detectHistory + detectHistory_,
FP + FP_,
all_true_anom + all_true_anom_,
)
add = np.mean(detectHistory)
if verbose:
print("Amount of true anomalies", all_true_anom)
print(f"A number of missed CPs = {missing}")
print(f"A number of FPs = {int(FP)}")
print("Average time", add)
return add, missing, int(FP), all_true_anom
elif (metric == "binary") or (metric == "confusion_matrix"):
if all(isinstance(my_el, pd.Series) for my_el in true):
TP, TN, FP, FN = 0, 0, 0, 0
for i in range(len(prediction)):
TP_, TN_, FP_, FN_ = confusion_matrix(true[i], prediction[i])
TP, TN, FP, FN = TP + TP_, TN + TN_, FP + FP_, FN + FN_
else:
print(
"For this metric it is better if you use pd.Series format for true \nwith common index of true and prediction"
)
TP, TN, FP, FN = 0, 0, 0, 0
for i in range(len(prediction)):
dict_cp_confusion = extract_cp_confusion_matrix(
detecting_boundaries[i], prediction[i], binary=True
)
TP += np.sum(
[
len(dict_cp_confusion["TPs"][window][1])
for window in dict_cp_confusion["TPs"]
]
)
FP += len(dict_cp_confusion["FPs"])
FN += len(dict_cp_confusion["FNs"])
TN += len(prediction[i]) - TP - FP - FN
if metric == "binary":
f1 = round(TP / (TP + (FN + FP) / 2), 2)
far = round(FP / (FP + TN) * 100, 2)
mar = round(FN / (FN + TP) * 100, 2)
if verbose:
print(f"False Alarm Rate {far} %")
print(f"Missing Alarm Rate {mar} %")
print(f"F1 metric {f1}")
return f1, far, mar
elif metric == "confusion_matrix":
if verbose:
print("TP", TP)
print("TN", TN)
print("FP", FP)
print("FN", FN)
return TP, TN, FP, FN
else:
raise Exception("Choose the performance metric")