-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtransfer_learn_classifier.py
149 lines (119 loc) · 6.41 KB
/
transfer_learn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from importlib import import_module
from lesion_classifier import LesionClassifier
from base_model_param import BaseModelParam
import tensorflow as tf
import keras
import keras.backend as K
from keras.layers import Dense, Activation, GlobalAveragePooling2D, Dropout
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import ReduceLROnPlateau, EarlyStopping
class TransferLearnClassifier(LesionClassifier):
"""Skin lesion classifier based on transfer learning.
# Arguments
base_model_param: Instance of `BaseModelParam`.
"""
def __init__(self, model_folder, base_model_param, fc_layers=None, num_classes=None, dropout=None, batch_size=32, max_queue_size=10, image_data_format=None, metrics=None,
class_weight=None, image_paths_train=None, categories_train=None, image_paths_val=None, categories_val=None):
if num_classes is None:
raise ValueError('num_classes cannot be None')
self._model_name = base_model_param.class_name
self.metrics = metrics
if image_data_format is None:
image_data_format = K.image_data_format()
if image_data_format == 'channels_first':
input_shape = (3, base_model_param.input_size[0], base_model_param.input_size[1])
else:
input_shape = (base_model_param.input_size[0], base_model_param.input_size[1], 3)
# Dynamically get the class name of base model
module = import_module(base_model_param.module_name)
class_ = getattr(module, base_model_param.class_name)
start_lr = 1e-4
# create an instance of base model which is pre-trained on the ImageNet dataset.
if base_model_param.class_name == 'ResNeXt50':
# A workaround to use ResNeXt in Keras 2.2.4.
# See http://donghao.org/2019/02/22/using-resnext-in-keras-2-2-4/
self._base_model = class_(include_top=False, weights='imagenet', input_shape=input_shape,
backend=keras.backend, layers=keras.layers, models=keras.models, utils=keras.utils)
else:
self._base_model = class_(include_top=False, weights='imagenet', input_shape=input_shape)
# Freeze all layers in the base model
for layer in self._base_model.layers:
layer.trainable = False
x = self._base_model.output
x = GlobalAveragePooling2D()(x)
# Add fully connected layers
if fc_layers is not None:
for fc in fc_layers:
x = Dense(fc, activation='relu')(x)
if dropout is not None:
x = Dropout(rate=dropout)(x)
# Final dense layer and softmax activation layer
x = Dense(num_classes, name='dense_pred')(x)
predictions = Activation('softmax', name='probs')(x)
# Create the model
self._model = Model(inputs=self._base_model.input, outputs=predictions)
# Compile the model
self._model.compile(optimizer=Adam(lr=start_lr), loss='categorical_crossentropy', metrics=self.metrics)
super().__init__(
model_folder=model_folder, input_size=base_model_param.input_size, preprocessing_func=base_model_param.preprocessing_func, class_weight=class_weight, num_classes=num_classes,
image_data_format=image_data_format, batch_size=batch_size, max_queue_size=max_queue_size,
image_paths_train=image_paths_train, categories_train=categories_train,
image_paths_val=image_paths_val, categories_val=categories_val)
def train(self, epoch_num, workers=1):
feature_extract_epochs = 3
# Checkpoint Callbacks
checkpoints = super()._create_checkpoint_callbacks()
# This ReduceLROnPlateau is just a workaround to make csv_logger record learning rate, and won't affect learning rate during feature extraction epochs.
reduce_lr = ReduceLROnPlateau(patience=feature_extract_epochs+10, verbose=1)
# Callback that streams epoch results to a csv file.
csv_logger = super()._create_csvlogger_callback()
### Feature extraction
self._model.fit_generator(
self.generator_train,
class_weight=self.class_weight,
max_queue_size=self.max_queue_size,
workers=workers,
use_multiprocessing=False,
steps_per_epoch=len(self.image_paths_train)//self.batch_size,
epochs=feature_extract_epochs,
verbose=1,
callbacks=(checkpoints + [reduce_lr, csv_logger]),
validation_data=self.generator_val,
validation_steps=len(self.image_paths_val)//self.batch_size)
### Fine tuning. It should only be attempted after you have trained the top-level classifier with the pre-trained model set to non-trainable.
print('===== Unfreeze the base model =====')
for layer in self._base_model.layers:
layer.trainable = True
# Use a much lower learning rate in the fine tuning step
fine_tuning_start_lr = 1e-5
# Compile the model
self._model.compile(optimizer=Adam(lr=fine_tuning_start_lr), loss='categorical_crossentropy', metrics=self.metrics)
self._model.summary()
# Re-create Checkpoint Callbacks
checkpoints = super()._create_checkpoint_callbacks()
# Reduce learning rate when the validation loss has stopped improving.
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=8, min_lr=1e-7, verbose=1)
# Stop training when the validation loss has stopped improving.
early_stop = EarlyStopping(monitor='val_loss', patience=16, verbose=1)
self.generator_train.reset()
self.generator_val.reset()
self._model.fit_generator(
self.generator_train,
class_weight=self.class_weight,
max_queue_size=self.max_queue_size,
workers=workers,
use_multiprocessing=False,
steps_per_epoch=len(self.image_paths_train)//self.batch_size,
epochs=epoch_num,
verbose=1,
callbacks=(checkpoints + [reduce_lr, early_stop, csv_logger]),
validation_data=self.generator_val,
validation_steps=len(self.image_paths_val)//self.batch_size,
initial_epoch=feature_extract_epochs)
@property
def model(self):
return self._model
@property
def model_name(self):
return self._model_name