forked from ramapcsx2/gbs-control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframesync.h
680 lines (577 loc) · 22.2 KB
/
framesync.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#ifndef FRAMESYNC_H_
#define FRAMESYNC_H_
// fast digitalRead()
#if defined(ESP8266)
#define digitalRead(x) ((GPIO_REG_READ(GPIO_IN_ADDRESS) >> x) & 1)
#ifndef DEBUG_IN_PIN
#define DEBUG_IN_PIN D6
#endif
#else // Arduino
// fastest, but non portable (Uno pin 11 = PB3, Mega2560 pin 11 = PB5)
//#define digitalRead(x) bitRead(PINB, 3)
#include "fastpin.h"
#define digitalRead(x) fastRead<x>()
// no define for DEBUG_IN_PIN
#endif
#include <ESP8266WiFi.h>
// FS_DEBUG: full verbose debug over serial
// FS_DEBUG_LED: just blink LED (off = adjust phase, on = normal phase)
//#define FS_DEBUG
//#define FS_DEBUG_LED
// #define FRAMESYNC_DEBUG
#ifdef FRAMESYNC_DEBUG
#define fsDebugPrintf(...) SerialM.printf(__VA_ARGS__)
#else
#define fsDebugPrintf(...)
#endif
namespace MeasurePeriod {
volatile uint32_t stopTime, startTime;
volatile uint32_t armed;
void _risingEdgeISR_prepare();
void _risingEdgeISR_measure();
void start() {
startTime = 0;
stopTime = 0;
armed = 0;
attachInterrupt(DEBUG_IN_PIN, _risingEdgeISR_prepare, RISING);
}
void ICACHE_RAM_ATTR _risingEdgeISR_prepare()
{
noInterrupts();
//startTime = ESP.getCycleCount();
__asm__ __volatile__("rsr %0,ccount"
: "=a"(startTime));
detachInterrupt(DEBUG_IN_PIN);
armed = 1;
attachInterrupt(DEBUG_IN_PIN, _risingEdgeISR_measure, RISING);
interrupts();
}
void ICACHE_RAM_ATTR _risingEdgeISR_measure()
{
noInterrupts();
//stopTime = ESP.getCycleCount();
__asm__ __volatile__("rsr %0,ccount"
: "=a"(stopTime));
detachInterrupt(DEBUG_IN_PIN);
interrupts();
}
}
void setExternalClockGenFrequencySmooth(uint32_t freq) {
uint32_t current = rto->freqExtClockGen;
rto->freqExtClockGen = freq;
constexpr uint32_t STEP_SIZE_HZ = 1000;
if (current > rto->freqExtClockGen) {
if ((current - rto->freqExtClockGen) < 750000) {
while (current > (rto->freqExtClockGen + STEP_SIZE_HZ)) {
current -= STEP_SIZE_HZ;
Si.setFreq(0, current);
handleWiFi(0);
}
}
} else if (current < rto->freqExtClockGen) {
if ((rto->freqExtClockGen - current) < 750000) {
while ((current + STEP_SIZE_HZ) < rto->freqExtClockGen) {
current += STEP_SIZE_HZ;
Si.setFreq(0, current);
handleWiFi(0);
}
}
}
Si.setFreq(0, rto->freqExtClockGen);
}
template <class GBS, class Attrs>
class FrameSyncManager
{
private:
typedef typename GBS::STATUS_VDS_VERT_COUNT VERT_COUNT;
typedef typename GBS::VDS_HSYNC_RST HSYNC_RST;
typedef typename GBS::VDS_VSYNC_RST VSYNC_RST;
typedef typename GBS::VDS_VS_ST VSST;
typedef typename GBS::template Tie<VSYNC_RST, VSST> VRST_SST;
static const uint8_t debugInPin = Attrs::debugInPin;
static const int16_t syncCorrection = Attrs::syncCorrection;
static const int32_t syncTargetPhase = Attrs::syncTargetPhase;
static bool syncLockReady;
static uint8_t delayLock;
static int16_t syncLastCorrection;
/// Set to -1 if uninitialized.
/// Reset with syncLastCorrection.
static float maybeFreqExt_per_videoFps;
// Sample vsync start and stop times from debug pin.
static bool vsyncOutputSample(uint32_t *start, uint32_t *stop)
{
yield();
ESP.wdtDisable();
MeasurePeriod::start();
// typical: 300000 at 80MHz, 600000 at 160MHz
for (uint32_t i = 0; i < 3000000; i++) {
if (MeasurePeriod::armed) {
MeasurePeriod::armed = 0;
delay(7);
WiFi.setSleepMode(WIFI_LIGHT_SLEEP);
}
if (MeasurePeriod::stopTime > 0) {
break;
}
}
*start = MeasurePeriod::startTime;
*stop = MeasurePeriod::stopTime;
ESP.wdtEnable(0);
WiFi.setSleepMode(WIFI_NONE_SLEEP);
if ((*start >= *stop) || *stop == 0 || *start == 0) {
// ESP.getCycleCount() overflow oder no pulse, just fail this round
return false;
}
return true;
}
// Sample input and output vsync periods and their phase
// difference in microseconds
static bool vsyncPeriodAndPhase(int32_t *periodInput, int32_t *periodOutput, int32_t *phase)
{
fsDebugPrintf("vsyncPeriodAndPhase(), TEST_BUS_SEL=%d\n", GBS::TEST_BUS_SEL::read());
uint32_t inStart, inStop, outStart, outStop;
uint32_t inPeriod, outPeriod, diff;
// calling code needs to ensure debug bus is ready to sample vperiod
if (!vsyncInputSample(&inStart, &inStop)) {
return false;
}
GBS::TEST_BUS_SEL::write(0x2); // 0x2 = VDS (t3t50t4) // measure VDS vblank (VB ST/SP)
inPeriod = (inStop - inStart); //>> 1;
if (!vsyncOutputSample(&outStart, &outStop)) {
return false;
}
outPeriod = (outStop - outStart); //>> 1;
diff = (outStart - inStart) % inPeriod;
if (periodInput)
*periodInput = inPeriod;
if (periodOutput)
*periodOutput = outPeriod;
if (phase)
*phase = (diff < inPeriod) ? diff : diff - inPeriod;
return true;
}
static bool sampleVsyncPeriods(uint32_t *input, uint32_t *output)
{
int32_t inPeriod, outPeriod;
if (!vsyncPeriodAndPhase(&inPeriod, &outPeriod, NULL))
return false;
*input = inPeriod;
*output = outPeriod;
return true;
}
// Find appropriate htotal that makes output frame time slightly more than the input.
static bool findBestHTotal(uint32_t &bestHtotal)
{
uint16_t inHtotal = HSYNC_RST::read();
uint32_t inPeriod, outPeriod;
if (inHtotal == 0) {
return false;
} // safety
if (!sampleVsyncPeriods(&inPeriod, &outPeriod)) {
return false;
}
if (inPeriod == 0 || outPeriod == 0) {
return false;
} // safety
// allow ~4 negative (inPeriod is < outPeriod) clock cycles jitter
if ((inPeriod > outPeriod ? inPeriod - outPeriod : outPeriod - inPeriod) <= 4) {
/*if (inPeriod >= outPeriod) {
Serial.print("inPeriod >= out: ");
Serial.println(inPeriod - outPeriod);
}
else {
Serial.print("inPeriod < out: ");
Serial.println(outPeriod - inPeriod);
}*/
bestHtotal = inHtotal;
} else {
// large htotal can push intermediates to 33 bits
bestHtotal = (uint64_t)(inHtotal * (uint64_t)inPeriod) / (uint64_t)outPeriod;
}
// new 08.11.19: skip this step, IF period measurement should be stable enough to give repeatable results
//if (bestHtotal == (inHtotal + 1)) { bestHtotal -= 1; } // works well
//if (bestHtotal == (inHtotal - 1)) { bestHtotal += 1; } // check with SNES + vtotal = 1000 (1280x960)
#ifdef FS_DEBUG
if (bestHtotal != inHtotal) {
Serial.print(F(" wants new htotal, oldbest: "));
Serial.print(inHtotal);
Serial.print(F(" newbest: "));
Serial.println(bestHtotal);
Serial.print(F(" inPeriod: "));
Serial.print(inPeriod);
Serial.print(F(" outPeriod: "));
Serial.println(outPeriod);
}
#endif
return true;
}
public:
// sets syncLockReady = ready() = false, which in turn starts a new init()
// -> findBestHtotal() run in loop()
static void reset(uint8_t frameTimeLockMethod)
{
#ifdef FS_DEBUG
Serial.print("FS reset(), with correction: ");
#endif
if (syncLastCorrection != 0) {
#ifdef FS_DEBUG
Serial.println("Yes");
#endif
uint16_t vtotal = 0, vsst = 0;
VRST_SST::read(vtotal, vsst);
uint16_t timeout = 0;
vtotal -= syncLastCorrection;
if (frameTimeLockMethod == 0) { // moves VS position
vsst -= syncLastCorrection;
}
while ((GBS::STATUS_VDS_FIELD::read() == 1) && (++timeout < 400))
;
GBS::VDS_VS_ST::write(vsst);
timeout = 0;
while ((GBS::STATUS_VDS_FIELD::read() == 0) && (++timeout < 400))
;
GBS::VDS_VSYNC_RST::write(vtotal);
}
#ifdef FS_DEBUG
else {
Serial.println("No");
}
#endif
fsDebugPrintf("FrameSyncManager::reset(%d)\n", frameTimeLockMethod);
syncLockReady = false;
syncLastCorrection = 0;
delayLock = 0;
// Don't clear maybeFreqExt_per_videoFps.
//
// Clearing is unsafe, since many callers call reset(), don't
// call externalClockGenSyncInOutRate() -> initFrequency(), then
// expect runFrequency() to keep working.
//
// Not clearing is hopefully safe, since when loading an output
// resolution, externalClockGenResetClock() calls
// FrameSync::clearFrequency() and clears the variable, and
// later someone calls externalClockGenSyncInOutRate() ->
// FrameSync::initFrequency().
}
static void resetWithoutRecalculation()
{
syncLockReady = false;
delayLock = 0;
}
static uint16_t init()
{
uint32_t bestHTotal = 0;
// Adjust output horizontal sync timing so that the overall
// frame time is as close to the input as possible while still
// being less. Increasing the vertical frame size slightly
// should then push the output frame time to being larger than
// the input.
if (!findBestHTotal(bestHTotal)) {
return 0;
}
syncLockReady = true;
delayLock = 0;
return (uint16_t)bestHTotal;
}
static uint32_t getPulseTicks()
{
uint32_t inStart, inStop;
if (!vsyncInputSample(&inStart, &inStop)) {
return 0;
}
return inStop - inStart;
}
static bool ready(void)
{
return syncLockReady;
}
static int16_t getSyncLastCorrection()
{
return syncLastCorrection;
}
static void cleanup()
{
fsDebugPrintf("FrameSyncManager::cleanup(), resetting video frequency\n");
syncLastCorrection = 0; // the important bit
syncLockReady = 0;
delayLock = 0;
// Should we clear maybeFreqExt_per_videoFps?
//
// Clearing is hopefully safe. cleanup() appears to only be
// called when switching between 15 kHz and 31 kHz inputs, or
// when no video is present for an extended period of time and
// the output shuts off. (cleanup() is not called when switching
// between 240p and 480i.) When a new video signal is present,
// someone calls externalClockGenSyncInOutRate() ->
// FrameSync::initFrequency() to reinitialize the output frame
// sync.
//
// Not clearing is hopefully safe. See reset() for an
// explanation.
maybeFreqExt_per_videoFps = -1;
}
// Sample vsync start and stop times from debug pin.
static bool vsyncInputSample(uint32_t *start, uint32_t *stop)
{
yield();
ESP.wdtDisable();
MeasurePeriod::start();
// typical: 300000 at 80MHz, 600000 at 160MHz
for (uint32_t i = 0; i < 3000000; i++) {
if (MeasurePeriod::armed) {
MeasurePeriod::armed = 0;
delay(7);
WiFi.setSleepMode(WIFI_LIGHT_SLEEP);
}
if (MeasurePeriod::stopTime > 0) {
break;
}
}
*start = MeasurePeriod::startTime;
*stop = MeasurePeriod::stopTime;
ESP.wdtEnable(0);
WiFi.setSleepMode(WIFI_NONE_SLEEP);
if ((*start >= *stop) || *stop == 0 || *start == 0) {
// ESP.getCycleCount() overflow oder no pulse, just fail this round
return false;
}
return true;
}
// Perform vsync phase locking. This is accomplished by measuring
// the period and phase offset of the input and output vsync
// signals and adjusting the frame size (and thus the output vsync
// frequency) to bring the phase offset closer to the desired
// value.
static bool runVsync(uint8_t frameTimeLockMethod)
{
int32_t period;
int32_t phase;
int32_t target;
int16_t correction;
if (!syncLockReady)
return false;
if (delayLock < 2) {
delayLock++;
return true;
}
if (!vsyncPeriodAndPhase(&period, NULL, &phase))
return false;
target = (syncTargetPhase * period) / 360;
if (phase > target)
correction = 0;
else
correction = syncCorrection;
#ifdef FS_DEBUG
Serial.printf("phase: %7d target: %7d", phase, target);
if (correction == syncLastCorrection) {
// terminate line if returning early
Serial.println();
}
#endif
#ifdef FS_DEBUG_LED
if (correction == 0) {
digitalWrite(LED_BUILTIN, LOW); // LED ON
} else {
digitalWrite(LED_BUILTIN, HIGH); // LED OFF
}
#endif
// return early?
if (correction == syncLastCorrection) {
return true;
}
int16_t delta = correction - syncLastCorrection;
uint16_t vtotal = 0, vsst = 0;
uint16_t timeout = 0;
VRST_SST::read(vtotal, vsst);
vtotal += delta;
if (frameTimeLockMethod == 0) { // moves VS position
vsst += delta;
}
// else it is method 1: leaves VS position alone
while ((GBS::STATUS_VDS_FIELD::read() == 1) && (++timeout < 400))
;
GBS::VDS_VS_ST::write(vsst);
timeout = 0;
while ((GBS::STATUS_VDS_FIELD::read() == 0) && (++timeout < 400))
;
GBS::VDS_VSYNC_RST::write(vtotal);
syncLastCorrection = correction;
#ifdef FS_DEBUG
Serial.printf(" vtotal: %4d\n", vtotal);
#endif
return true;
}
static void clearFrequency() {
maybeFreqExt_per_videoFps = -1;
}
static void initFrequency(float outFramesPerS, uint32_t freqExtClockGen) {
/*
This value can be interpreted in multiple ways:
- Each output frame is a fixed number of video clocks long, at a
given output resolution.
- At a given output resolution, the video clock rate should be
proportional to the input FPS.
*/
maybeFreqExt_per_videoFps = (float)freqExtClockGen / outFramesPerS;
}
// Perform vsync phase locking. This is accomplished by measuring
// the period and phase offset of the input and output vsync
// signals, then adjusting the output video clock to bring the phase
// offset closer to the desired value.
static bool runFrequency()
{
if (maybeFreqExt_per_videoFps < 0) {
SerialM.printf(
"Error: trying to tune external clock frequency while clock frequency uninitialized!\n");
return true;
}
// Compare to externalClockGenSyncInOutRate().
if (GBS::PAD_CKIN_ENZ::read() != 0) {
// Failed due to external factors (PAD_CKIN_ENZ=0 on
// startup), not bad input signal, don't return frame sync
// error.
fsDebugPrintf(
"Skipping FrameSyncManager::runFrequency(), GBS::PAD_CKIN_ENZ::read() != 0\n");
return true;
}
if (rto->outModeHdBypass) {
fsDebugPrintf(
"Skipping FrameSyncManager::runFrequency(), rto->outModeHdBypass\n");
return true;
}
if (GBS::PLL648_CONTROL_01::read() != 0x75) {
SerialM.printf(
"Error: trying to tune external clock frequency while set to internal clock, PLL648_CONTROL_01=%d!\n",
GBS::PLL648_CONTROL_01::read());
return true;
}
if (!syncLockReady) {
fsDebugPrintf(
"Skipping FrameSyncManager::runFrequency(), !syncLockReady\n");
return false;
}
// ESP32 FPU only accelerates single-precision float add/mul, not divide, not double.
// https://esp32.com/viewtopic.php?p=82090#p82090
// ESP CPU cycles/s
const float esp8266_clock_freq = ESP.getCpuFreqMHz() * 1000000;
// ESP CPU cycles
int32_t periodInput; // int32_t periodOutput;
int32_t phase;
// Frame/s
float fpsInput;
// Measure input period until we get two consistent measurements. This
// substantially reduces the chance of incorrectly guessing FPS when
// input sync changes (but does not eliminate it, eg. when resetting a
// SNES).
bool success = false;
for (int attempt = 0; attempt < 2; attempt++) {
// Measure input period and output latency.
bool ret = vsyncPeriodAndPhase(&periodInput, nullptr, &phase);
// TODO make vsyncPeriodAndPhase() restore TEST_BUS_SEL, not the caller?
GBS::TEST_BUS_SEL::write(0x0);
if (!ret) {
SerialM.printf("runFrequency(): vsyncPeriodAndPhase failed, retrying...\n");
continue;
}
fpsInput = esp8266_clock_freq / (float)periodInput;
if (fpsInput < 47.0f || fpsInput > 86.0f) {
SerialM.printf(
"runFrequency(): fpsInput wrong: %f, retrying...\n",
fpsInput);
continue;
}
// Measure input period again. vsyncPeriodAndPhase()/getPulseTicks()
// -> vsyncInputSample() depend on GBS::TEST_BUS_SEL = 0, but
// vsyncPeriodAndPhase() sets it to 2.
GBS::TEST_BUS_SEL::write(0x0);
uint32_t periodInput2 = getPulseTicks();
if (periodInput2 == 0) {
SerialM.printf("runFrequency(): getPulseTicks failed, retrying...\n");
continue;
}
float fpsInput2 = esp8266_clock_freq / (float)periodInput2;
if (fpsInput2 < 47.0f || fpsInput2 > 86.0f) {
SerialM.printf(
"runFrequency(): fpsInput2 wrong: %f, retrying...\n",
fpsInput2);
continue;
}
// Check that the two FPS measurements are sufficiently close.
float diff = fabs(fpsInput2 - fpsInput);
float relDiff = diff / std::min(fpsInput, fpsInput2);
if (relDiff != relDiff || diff > 0.5f || relDiff > 0.00833f) {
SerialM.printf(
"FrameSyncManager::runFrequency() measured inconsistent FPS %f and %f, retrying...\n",
fpsInput,
fpsInput2);
continue;
}
success = true;
break;
}
if (!success) {
SerialM.printf("FrameSyncManager::runFrequency() failed!\n");
return false;
}
// ESP CPU cycles
int32_t target = (syncTargetPhase * periodInput) / 360;
// Latency error (distance behind target), in fractional frames.
// If latency increases, boost frequency, and vice versa.
const float latency_err_frames =
(float)(phase - target) // cycles
/ esp8266_clock_freq // s
* fpsInput; // frames
// 0.0038f is 2/525, the difference between SNES and Wii 240p.
// This number is somewhat arbitrary, but works well in
// practice.
float correction = 0.0038f * latency_err_frames;
// Some LCD displays (eg. Dell U2312HM) lose sync when changing
// frequency by 0.1% (switching between 59.94 and 60 FPS).
//
// To ensure long-term FPS stability, clamp the maximum deviation from
// input FPS to 0.06%. This is sufficient as long as fpsInput does not
// vary drastically from frame to frame.
constexpr float MAX_CORRECTION = 0.0006f;
if (correction > MAX_CORRECTION) correction = MAX_CORRECTION;
if (correction < -MAX_CORRECTION) correction = -MAX_CORRECTION;
const float rawFpsOutput = fpsInput * (1 + correction);
// This has floating-point conversion round-trip rounding errors, which
// is suboptimal, but it's not a big deal.
const float prevFpsOutput = (float)rto->freqExtClockGen / maybeFreqExt_per_videoFps;
// In case fpsInput is measured incorrectly, rawFpsOutput may be
// drastically different from the previous frame's output FPS. To limit
// the impact of incorrect input FPS measurements, clamp the maximum FPS
// deviation relative to the previous frame's *output* FPS. This
// provides short-term FPS stability.
constexpr float MAX_FPS_CHANGE = 0.0006f;
float fpsOutput = rawFpsOutput;
fpsOutput = std::min(fpsOutput, prevFpsOutput * (1 + MAX_FPS_CHANGE));
fpsOutput = std::max(fpsOutput, prevFpsOutput * (1 - MAX_FPS_CHANGE));
if (fabs(rawFpsOutput - prevFpsOutput) >= 1.f) {
SerialM.printf(
"FPS excursion detected! Measured input FPS %f, previous output FPS %f",
fpsInput, prevFpsOutput);
}
fsDebugPrintf(
"periodInput=%d, fpsInput=%f, latency_err_frames=%f from %f, "
"fpsOutput=%f := %f\n",
periodInput, fpsInput, latency_err_frames, (float)syncTargetPhase / 360.f,
prevFpsOutput, fpsOutput);
const auto freqExtClockGen = (uint32_t)(maybeFreqExt_per_videoFps * fpsOutput);
fsDebugPrintf(
"Setting clock frequency from %u to %u\n",
rto->freqExtClockGen, freqExtClockGen);
setExternalClockGenFrequencySmooth(freqExtClockGen);
return true;
}
};
// grrrrrrrrr
template <class GBS, class Attrs>
int16_t FrameSyncManager<GBS, Attrs>::syncLastCorrection;
template <class GBS, class Attrs>
float FrameSyncManager<GBS, Attrs>::maybeFreqExt_per_videoFps;
template <class GBS, class Attrs>
uint8_t FrameSyncManager<GBS, Attrs>::delayLock;
template <class GBS, class Attrs>
bool FrameSyncManager<GBS, Attrs>::syncLockReady;
#endif