-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
75 lines (57 loc) · 3.19 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
__auther__ = 'yizhangzc'
import numpy as np
from scipy.fftpack import fft
from sklearn import utils as skutils
class Opportunity( object ):
def __init__( self ):
self._path = 'data/opp/'
self._channel_num = 113
self._length = 300
self._user_num = 4
self._act_num = 5
def load_data( self, test_user=0 ):
train_x = np.empty( [0, self._length, self._channel_num], dtype=np.float )
train_y = np.empty( [0], dtype=np.int )
test_x = np.empty( [0, self._length, self._channel_num], dtype=np.float )
test_y = np.empty( [0], dtype=np.int )
for user_idx in range( self._user_num ):
if user_idx == test_user: # training user
# pass
# elif (user_idx-1+self._user_num)%self._user_num == test_user:
test_x = np.concatenate( (test_x, np.load(self._path+'processed_data/sub{}_features.npy'.format(user_idx)) ), axis=0 )
test_y = np.concatenate( (test_y, np.load(self._path+'processed_data/sub{}_labels.npy'.format(user_idx)) ), axis=0 )
else:
train_x = np.concatenate( (train_x, np.load(self._path+'processed_data/sub{}_features.npy'.format(user_idx)) ), axis=0 )
train_y = np.concatenate( (train_y, np.load(self._path+'processed_data/sub{}_labels.npy'.format(user_idx)) ), axis=0 )
train_x, train_y = skutils.shuffle( train_x, train_y )
test_x, test_y = skutils.shuffle( test_x, test_y )
return train_x, train_y, test_x, test_y
class PAMAP2( object ):
def __init__( self ):
self._path = 'data/pamap/'
self._channel_num = 36
self._length = 200
self._user_num = 8
self._act_num = 12
def load_data( self, test_user=0 ):
train_x = np.empty( [0, self._length, self._channel_num], dtype=np.float )
train_y = np.empty( [0], dtype=np.int )
test_x = np.empty( [0, self._length, self._channel_num], dtype=np.float )
test_y = np.empty( [0], dtype=np.int )
for user_idx in range( self._user_num ):
if user_idx == test_user:
# pass
# elif (user_idx-1+self._user_num)%self._user_num == test_user:
test_x = np.concatenate( (test_x, np.load(self._path+'processed_data/sub{}_features.npy'.format(user_idx)) ), axis=0 )
test_y = np.concatenate( (test_y, np.load(self._path+'processed_data/sub{}_labels.npy'.format(user_idx)) ), axis=0 )
else:
train_x = np.concatenate( (train_x, np.load(self._path+'processed_data/sub{}_features.npy'.format(user_idx)) ), axis=0 )
train_y = np.concatenate( (train_y, np.load(self._path+'processed_data/sub{}_labels.npy'.format(user_idx)) ), axis=0 )
train_x, train_y = skutils.shuffle( train_x, train_y )
test_x, test_y = skutils.shuffle( test_x, test_y )
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
"""
dataset = Opportunity()
dataset.load_data()
"""