-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
37 lines (28 loc) · 1.11 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from PIL import Image
import os
from torch.utils.data import Dataset
import numpy as np
class XYDataset(Dataset):
def __init__(self, root_X, root_Y, transform=None):
self.root_X = root_X
self.root_Y = root_Y
self.transform = transform
self.X_images = os.listdir(root_X)
self.Y_images = os.listdir(root_Y)
self.length_dataset = max(len(self.X_images), len(self.Y_images))
self.X_len = len(self.X_images)
self.Y_len = len(self.Y_images)
def __len__(self):
return self.length_dataset
def __getitem__(self, index):
X_img = self.X_images[index % self.X_len]
Y_img = self.Y_images[index % self.Y_len]
X_path = os.path.join(self.root_X, X_img)
Y_path = os.path.join(self.root_Y, Y_img)
X_img = np.array(Image.open(X_path).convert("RGB"))
Y_img = np.array(Image.open(Y_path).convert("RGB"))
if self.transform:
augmentations = self.transform(image=X_img, image0=Y_img)
X_img = augmentations["image"]
Y_img = augmentations["image0"]
return X_img, Y_img