-
Notifications
You must be signed in to change notification settings - Fork 201
/
flow_utils.py
258 lines (205 loc) · 8.9 KB
/
flow_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import sys
import cv2
import numpy as np
import torch
import torch.nn.functional as F
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
gmflow_dir = os.path.join(parent_dir, 'deps/gmflow')
sys.path.insert(0, gmflow_dir)
from gmflow.gmflow import GMFlow # noqa: E702 E402 F401
from utils.utils import InputPadder # noqa: E702 E402
def coords_grid(b, h, w, homogeneous=False, device=None):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W]
stacks = [x, y]
if homogeneous:
ones = torch.ones_like(x) # [H, W]
stacks.append(ones)
grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W]
grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W]
if device is not None:
grid = grid.to(device)
return grid
def bilinear_sample(img,
sample_coords,
mode='bilinear',
padding_mode='zeros',
return_mask=False):
# img: [B, C, H, W]
# sample_coords: [B, 2, H, W] in image scale
if sample_coords.size(1) != 2: # [B, H, W, 2]
sample_coords = sample_coords.permute(0, 3, 1, 2)
b, _, h, w = sample_coords.shape
# Normalize to [-1, 1]
x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1
y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1
grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2]
img = F.grid_sample(img,
grid,
mode=mode,
padding_mode=padding_mode,
align_corners=True)
if return_mask:
mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (
y_grid <= 1) # [B, H, W]
return img, mask
return img
def flow_warp(feature,
flow,
mask=False,
mode='bilinear',
padding_mode='zeros'):
b, c, h, w = feature.size()
assert flow.size(1) == 2
grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W]
return bilinear_sample(feature,
grid,
mode=mode,
padding_mode=padding_mode,
return_mask=mask)
def forward_backward_consistency_check(fwd_flow,
bwd_flow,
alpha=0.01,
beta=0.5):
# fwd_flow, bwd_flow: [B, 2, H, W]
# alpha and beta values are following UnFlow
# (https://arxiv.org/abs/1711.07837)
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow,
dim=1) # [B, H, W]
warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W]
warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W]
diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W]
diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1)
threshold = alpha * flow_mag + beta
fwd_occ = (diff_fwd > threshold).float() # [B, H, W]
bwd_occ = (diff_bwd > threshold).float()
return fwd_occ, bwd_occ
@torch.no_grad()
def get_warped_and_mask(flow_model,
image1,
image2,
image3=None,
pixel_consistency=False):
if image3 is None:
image3 = image1
padder = InputPadder(image1.shape, padding_factor=8)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
results_dict = flow_model(image1,
image2,
attn_splits_list=[2],
corr_radius_list=[-1],
prop_radius_list=[-1],
pred_bidir_flow=True)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W]
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W]
fwd_occ, bwd_occ = forward_backward_consistency_check(
fwd_flow, bwd_flow) # [1, H, W] float
if pixel_consistency:
warped_image1 = flow_warp(image1, bwd_flow)
bwd_occ = torch.clamp(
bwd_occ +
(abs(image2 - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0,
1).unsqueeze(0)
warped_results = flow_warp(image3, bwd_flow)
return warped_results, bwd_occ, bwd_flow
class FlowCalc():
def __init__(self, model_path='./models/gmflow_sintel-0c07dcb3.pth'):
flow_model = GMFlow(
feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to('cuda')
checkpoint = torch.load(model_path,
map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
self.model = flow_model
@torch.no_grad()
def get_flow(self, image1, image2, save_path=None):
if save_path is not None and os.path.exists(save_path):
bwd_flow = read_flow(save_path)
return bwd_flow
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
padder = InputPadder(image1.shape, padding_factor=8)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
results_dict = self.model(image1,
image2,
attn_splits_list=[2],
corr_radius_list=[-1],
prop_radius_list=[-1],
pred_bidir_flow=True)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W]
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W]
fwd_occ, bwd_occ = forward_backward_consistency_check(
fwd_flow, bwd_flow) # [1, H, W] float
if save_path is not None:
flow_np = bwd_flow.cpu().numpy()
np.save(save_path, flow_np)
mask_path = os.path.splitext(save_path)[0] + '.png'
bwd_occ = bwd_occ.cpu().permute(1, 2, 0).to(
torch.long).numpy() * 255
cv2.imwrite(mask_path, bwd_occ)
return bwd_flow
@torch.no_grad()
def get_mask(self, image1, image2, save_path=None):
if save_path is not None:
mask_path = os.path.splitext(save_path)[0] + '.png'
if os.path.exists(mask_path):
return read_mask(mask_path)
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
padder = InputPadder(image1.shape, padding_factor=8)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
results_dict = self.model(image1,
image2,
attn_splits_list=[2],
corr_radius_list=[-1],
prop_radius_list=[-1],
pred_bidir_flow=True)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W]
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W]
fwd_occ, bwd_occ = forward_backward_consistency_check(
fwd_flow, bwd_flow) # [1, H, W] float
if save_path is not None:
flow_np = bwd_flow.cpu().numpy()
np.save(save_path, flow_np)
mask_path = os.path.splitext(save_path)[0] + '.png'
bwd_occ = bwd_occ.cpu().permute(1, 2, 0).to(
torch.long).numpy() * 255
cv2.imwrite(mask_path, bwd_occ)
return bwd_occ
def warp(self, img, flow, mode='bilinear'):
expand = False
if len(img.shape) == 2:
expand = True
img = np.expand_dims(img, 2)
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
dtype = img.dtype
img = img.to(torch.float)
res = flow_warp(img, flow, mode=mode)
res = res.to(dtype)
res = res[0].cpu().permute(1, 2, 0).numpy()
if expand:
res = res[:, :, 0]
return res
def read_flow(save_path):
flow_np = np.load(save_path)
bwd_flow = torch.from_numpy(flow_np)
return bwd_flow
def read_mask(save_path):
mask_path = os.path.splitext(save_path)[0] + '.png'
mask = cv2.imread(mask_path)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
return mask
flow_calc = FlowCalc()