-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsolution.cpp
37 lines (34 loc) · 1.54 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution
{
public:
int stoneGameII(vector<int> &piles)
{
int n = piles.size(); // Get the number of piles
// Create a DP table initialized with 0. dp[i][M] represents the maximum number of stones the current player can get starting at pile i with the given M.
vector<vector<int>> dp(n + 1, vector<int>(n + 1, 0));
// Create a suffix sum array. suffixSum[i] represents the total number of stones from pile i to the end.
vector<int> suffixSum(n + 1, 0);
// Calculate the suffix sums
for (int i = n - 1; i >= 0; --i)
{
// suffixSum[i] = current pile stones + suffixSum from the next pile
suffixSum[i] = suffixSum[i + 1] + piles[i];
}
// Fill the DP table
for (int i = n - 1; i >= 0; --i)
{ // Iterate through piles in reverse order
for (int M = 1; M <= n; ++M)
{ // Iterate through possible values of M
// Consider taking X piles where 1 <= X <= 2 * M
for (int X = 1; X <= 2 * M && i + X <= n; ++X)
{
// Calculate the maximum stones current player can take
// It is the maximum between the current value and the stones from the suffix minus what the next player can get.
dp[i][M] = max(dp[i][M], suffixSum[i] - dp[i + X][max(M, X)]);
}
}
}
// The result is the maximum stones the first player can get starting from pile 0 with M = 1
return dp[0][1];
}
};