-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsolution.js
49 lines (39 loc) · 2.13 KB
/
solution.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
var combinationSum2 = function (candidates, target) {
// Step 1: Sort the candidates array in ascending order to manage duplicates easily
candidates.sort((a, b) => a - b);
// Step 2: Initialize the result array to store all unique combinations
const result = [];
// Step 3: Initialize the current array to keep track of the current combination being explored
const current = [];
// Step 4: Define the backtracking function
// 'target' is the remaining sum we need to achieve
// 'start' is the current index in the candidates array we're exploring
const backtrack = (target, start) => {
// Step 5: Base case - If the target becomes zero, it means we've found a valid combination
if (target === 0) {
// Add a copy of the current combination to the result array
result.push([...current]);
return; // Stop further exploration and backtrack
}
// Step 6: Iterate over the candidates starting from the 'start' index
for (let i = start; i < candidates.length; i++) {
// Step 7: Skip duplicate candidates to avoid redundant combinations
// We skip a candidate if it's the same as the previous one and we're not at the starting index
if (i > start && candidates[i] === candidates[i - 1]) continue;
// Step 8: If the current candidate exceeds the target, we can stop further exploration
// This works because the array is sorted, so all subsequent candidates will also be larger
if (candidates[i] > target) break;
// Step 9: Choose the current candidate by adding it to the current combination
current.push(candidates[i]);
// Step 10: Recursively explore further by reducing the target and moving to the next candidate
backtrack(target - candidates[i], i + 1);
// Step 11: Backtrack by removing the last added candidate from the current combination
// This allows us to explore other potential combinations
current.pop();
}
};
// Step 12: Start the backtracking process from the first candidate
backtrack(target, 0);
// Step 13: Return the result array containing all unique combinations that sum up to the target
return result;
};